检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京化工大学信息科学与技术学院,北京100029
出 处:《小型微型计算机系统》2015年第5期1113-1116,共4页Journal of Chinese Computer Systems
摘 要:在跟踪-学习-检测(tracking-learning-detection,TLD)框架中,跟踪器采用传统的归一化互相关(Normalized Cross Correlation,NCC)算法完成图像的匹配.该方法具有较强抗噪声能力,但计算量庞大,难以满足实时跟踪的要求.对TLD跟踪器的匹配方法进行了改进,匹配过程由粗匹配和精匹配两步完成.新的两步匹配方法在保持较强抗噪能力的同时,减少了运算量,提高了匹配速度.实验表明,采用新的匹配方法的TLD目标跟踪器可以准确快速地进行特征点匹配,减少了计算时间,并有效地降低了误匹配率.In tracking-learning-detection, we use conventional normalized cross correlation only to do the match. Although it has some capacities of resisting noisy, it is difficult to meet real-time processing tracking requirements because of the amount of calculation of normalized cross correlation algorithm. In this paper, we will make improvement on the matching method of TLD tracker, and the image matching is divided into two stages of rough matching and fine matching. The new method has high anti-noise capability, and in the meanwhile it reduces computation cost and improves the matching speed. Experimental results show that the algorithm carried out matching feature points quickly and accurately, reducing the computational time, and reducing the false match rate effectively.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.214.100