检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张宗念[1] 林盛鑫[1] 毛焕章[2] 黄仁泰[2]
机构地区:[1]东莞理工学院电子工程学院,广东东莞523808 [2]东莞理工学院计算机学院,广东东莞523808
出 处:《计算机应用》2015年第5期1471-1473,1478,共4页journal of Computer Applications
基 金:东莞市科技计划项目(2011108102038)
摘 要:针对压缩感知理论的稀疏分析模型下的子空间追踪算法信号重构概率不高、重构性能不佳的缺点,研究了此模型下的稀疏补子空间追踪信号重构算法;通过选用随机紧支框架作为分析字典,设计了目标优化函数,改进优化了稀疏补取值方法,改进了算法迭代过程,实现了改进的稀疏补分析子空间追踪新算法(IASP)。实验结果证明,所提算法的信号完全重构概率明显高于分析子空间跟踪(ASP)等5种算法的信号完全重构概率;对于含高斯噪声的信号,所提算法重构信号的整体平均峰值信噪比明显超过ASP等3种算法整体平均峰值信噪比(PSNR),但略低于贪婪分析追踪(GAP)等2种算法的整体平均峰值信噪比。所提算法可用于语音和图像信号处理等领域。As subspace pursuit algorithm under cosparsity analysis model in compressed sensing has the shortcomings of low completely successful reconstruction probability and poor reconstruction performance, a cosparsity analysis subspace pursuit algorithm was proposed. The proposed algorithm was realized by adopting the selected random compact frame as the analysis dictionary and redesigning target optimization function. The selecting method of cosparsity value and the iterated process were improved. The simulation experiments show that the proposed algorithm has obviously higher completely successful reconstruction probability than that of Analysis Subspace Pursuit( ASP) and other five algorithms, and has higher comprehensive average Peak Signal-to-Noise Ratio( PSNR) for the reconstructed signal than that of ASP and other three algorithms, but a little bit lower than that of Gradient Analysis Pursuit( GAP) and other two algorithms when the original signal has Gaussion noise. The new algorithm can be used in audio and image signal processing.
分 类 号:TN911.72[电子电信—通信与信息系统] TP301.6[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117