检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Information and Electrical Engineering,Hebei University of Engineering [2]State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences
出 处:《Journal of Semiconductors》2015年第4期131-142,共12页半导体学报(英文版)
基 金:supported by the Scientific Research Plan Projects of Hebei Education Department(No.Q2012019)
摘 要:This paper presents the design and implementation of a low power wide tuning range baseband filter with an accurate on-chip tuning circuit for reconfigurable multistandard wireless transceivers. The realized low pass filter (LPF) is a six-order Butterworth type by cascading three stage active-Gm-RC biquadratic cells. A mod- ified linearization technique is used to improve the filter linearity performance at low power consumption. A new process-independent transconductor matching circuit and a new frequency tuning circuit with frequency compen- sation are proposed to achieve a high precision filter frequency response. The proposed LPF is realized in a 130 nm standard CMOS technology. The measured results show that the LPF exhibits a high bandwidth programmability from 0.1 to 25 MHz with a tuning frequency error less than 2.68% over the wide tuning range. The power consump- tion is scalable, ranging from 0.52 to 5.25 mA, from a 1.2 V power supply while achieving a 26.3 dBm in-band IIP3.This paper presents the design and implementation of a low power wide tuning range baseband filter with an accurate on-chip tuning circuit for reconfigurable multistandard wireless transceivers. The realized low pass filter (LPF) is a six-order Butterworth type by cascading three stage active-Gm-RC biquadratic cells. A mod- ified linearization technique is used to improve the filter linearity performance at low power consumption. A new process-independent transconductor matching circuit and a new frequency tuning circuit with frequency compen- sation are proposed to achieve a high precision filter frequency response. The proposed LPF is realized in a 130 nm standard CMOS technology. The measured results show that the LPF exhibits a high bandwidth programmability from 0.1 to 25 MHz with a tuning frequency error less than 2.68% over the wide tuning range. The power consump- tion is scalable, ranging from 0.52 to 5.25 mA, from a 1.2 V power supply while achieving a 26.3 dBm in-band IIP3.
关 键 词:low power baseband filter frequency tuning
分 类 号:TN713[电子电信—电路与系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.177