求解流水车间批量流集成调度的离散入侵杂草优化算法  被引量:10

A discrete invasive weed optimization algorithm for the integrated lot-streaming flow shop scheduling problem

在线阅读下载全文

作  者:桑红燕[1] 潘全科[2] 

机构地区:[1]聊城大学计算机学院,山东聊城252059 [2]华中科技大学数字制造装备与技术国家重点实验室,湖北武汉430074

出  处:《控制理论与应用》2015年第2期246-250,共5页Control Theory & Applications

基  金:国家自然科学基金项目(61174187;61104179;61374187);新世纪优秀人才支持计划项目(NCET--13--0106);高等学校博士学科点专项科研基金项目(20130042110035);山东省高等学校科技计划项目(J14LN28)资助~~

摘  要:提出一种离散入侵杂草优化算法,用来解决最大完工时间目标的流水车间批量流集成调度问题.该调度问题包含两个紧密耦合的子问题:批次分割问题和考虑启动时间的批次调度问题.设计了两段字符串编码,用来表示两个子问题.与基本入侵杂草优化算法不同,所提算法基于适应度和年龄确定杂草种子数量,基于正切函数和连续邻域操作产生种子.8种邻域算子的混合应用与局部搜索增强了算法的求解能力.仿真实验表明了所提算法的有效性.An effective discrete invasive weed optimization (DIWO) algorithm is presented to minimize the maximum completion time for an integrated lot-streaming flow shop scheduling problem, which can be modeled as two closely coupled sub-problems. One sub-problem is a lot-splitting problem, and the other is a batch scheduling problem with separable setup times. A two-stage string encoding is designed to represent the two sub-problems. Unlike the basic invasive weed optimization algorithm, the presented DIWO determines the number of seeds for each individual not only based on its fitness but also based on its age. In addition, the D1WO generates a seed based on the tangent function and the continuous neighborhood operation. Eight neighborhood operators and a local search procedure are developed. The mixed application of the eight neighborhood operators and the local search procedure significantly enhance the performance of the DIWO. The computational results based on extensive experiment demonstrate the effectiveness of the presented DIWO algorithm.

关 键 词:流水车间 批量流 入侵杂草优化 邻域搜索 

分 类 号:TB497[一般工业技术] TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象