出 处:《Frontiers of Environmental Science & Engineering》2015年第3期522-527,共6页环境科学与工程前沿(英文)
基 金:This work was partly supported by the National Natural Science Foundation of China (Grant Nos. 51039007, 51179212, and 51278500), the program of Guangzhou Science & Technology Department (No. 2012J4300115), and the research fund program of Guangdong provincial key laboratory of environmental pollution control and remediation technology (No. 2013K0002); the research fund program of key laboratory of water and air pollution control of Guangdong Province (No. GD2012A01).
摘 要:As the bioelectrochemical system, the microbial fuel cell (MFC) and the microbial electrolysis cell (MEC) were developed to selectively recover Cu^2+ and Ni^2+ ions from wastewater. The wastewater was treated in the cathode chambers of the system, in which Cu^2+ and Ni^2+ ions were removed by using the MFC and the MEC, respectively. At an initial Cu^2+ concentration of 500 mg· L^-1, removal efficiencies of Cu^2+ increased from 97.0%±1.8% to 99.0%±0.3% with the initial Ni^2+ concentrations from 250 to 1000 mg· L^-1, and maximum power densities increased from 3.1±0.5 to 5.4±0.6W.m-3. The Ni^2+ removal mass in the MEC increased from 6.84-0.2 to 20.54-1.5 mg with the increase of Ni^2+ concentrations. At an initial Ni^2+ concentration of 500 mg· L^-1, Cu^2+ removal etticiencies decreased from 99.1%±0.3% to 74.2%±3.8% with the initial Cu^2+ concentrations from 250 to 1000 mg -L1, and maximum power densities increased from 3.0±0.1 to 6.3±1.2W.m^-3. Subsequently, the Ni^2+ removal efficiencies decreased from 96.9%-4-3.1% to 73.3%4-5.4%. The results clearly demonstrated the feasibility of selective recovery of Cu2~ and Ni2~ from the wastewater using the bioelectrochemical system.As the bioelectrochemical system, the microbial fuel cell (MFC) and the microbial electrolysis cell (MEC) were developed to selectively recover Cu^2+ and Ni^2+ ions from wastewater. The wastewater was treated in the cathode chambers of the system, in which Cu^2+ and Ni^2+ ions were removed by using the MFC and the MEC, respectively. At an initial Cu^2+ concentration of 500 mg· L^-1, removal efficiencies of Cu^2+ increased from 97.0%±1.8% to 99.0%±0.3% with the initial Ni^2+ concentrations from 250 to 1000 mg· L^-1, and maximum power densities increased from 3.1±0.5 to 5.4±0.6W.m-3. The Ni^2+ removal mass in the MEC increased from 6.84-0.2 to 20.54-1.5 mg with the increase of Ni^2+ concentrations. At an initial Ni^2+ concentration of 500 mg· L^-1, Cu^2+ removal etticiencies decreased from 99.1%±0.3% to 74.2%±3.8% with the initial Cu^2+ concentrations from 250 to 1000 mg -L1, and maximum power densities increased from 3.0±0.1 to 6.3±1.2W.m^-3. Subsequently, the Ni^2+ removal efficiencies decreased from 96.9%-4-3.1% to 73.3%4-5.4%. The results clearly demonstrated the feasibility of selective recovery of Cu2~ and Ni2~ from the wastewater using the bioelectrochemical system.
关 键 词:bioelectrochemical system Cu^2+ Ni^2+ selective recovery
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...