检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]信息工程大学,河南郑州450001
出 处:《信息工程大学学报》2015年第2期234-239,共6页Journal of Information Engineering University
基 金:国家科技重大专项资助项目(2010ZX0300602-001)
摘 要:针对流量分类中样本标注瓶颈和类不均衡问题,提出一种基于K均值和k近邻的半监督流量分类算法。采用K均值聚类算法将混有少量标记样本和大量未标记样本的数据聚成若干个簇,然后采用k近邻算法利用簇中标记样本对未标记样本进行分类。在分类过程中根据簇中标记样本分布调整参与分类的最近邻居数,从而克服了类不均衡对识别小类流的不利影响。理论分析和实验结果都表明,算法在面对非均衡协议流时提高了小类流的识别率。In order to solve the problem of sample marking bottleneck and the imbalanced protocol flow,a semi-supervised traffic identification algorithm based on K-means and k-Nearest Neighbour (kNN)' is presented. The K-means algorithm is first employed to partition a training dataset that consists of a few labeled flows combined with abundant unlabeled flows. Then, the unlabeled smaples are identified using the labeled samples in the cluster based on kNN. The number of the nearest neighbours is adjusted according to the distribution of the labeled samples in the cluster,which over- comes the adverse effects of the imbalanced protocol flows to identify the minority flows. Theoretical analysis and experimental results show that the algorithm can improve the recognition rate of minority flows in the ease of the imbalanced protocol flows.
分 类 号:TP393.06[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.124