检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]信息工程大学,河南郑州450001
出 处:《信息工程大学学报》2015年第2期240-244,共5页Journal of Information Engineering University
基 金:国家科技重大专项资助项目(2010ZX0300602-001)
摘 要:针对网络流量分类中类不均衡问题,提出一种基于K均值和k近邻的流量分类算法(traffic classification based on K-means and k nearest neighbor,KMk NN);以KMk NN为基础设计了一种集成分类器(ensemble classifier based on KMk NN,KKEC)。首先通过抽取不同的输入特征子集分别进行训练,获得不同的分类器,进而采取绝对多数与相对多数相结合的投票方式产生集成输出结果,最后采用非平衡数据集进行测试。理论分析和实验结果都表明,算法在面对非均衡协议流时提高了小类流的识别率。In order to solve the problem of imbalanced protocol flows, a traffic identification method based on K-means and k nearest neighbor (KMkNN) is proposed, on this basis, an ensemble classifier (KKEC) is presented. The different subsets of features are extracted to train different classifiers, and then the ensemble output is obtained by voting method combing absolute majority with relative majority, finally experiments are carried out on imbalance datasets. Theoretical analysis and experimental results show that the algorithm can improve the recognition rate of minority flows in the case of the imbalanced protocol flows.
分 类 号:TP393.06[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.118