基于EEMD形态谱和KFCM聚类集成的滚动轴承故障诊断方法研究  被引量:25

Research on rolling bearings fault diagnosis method based on EEMD morphological spectrum and kernel fuzzy C-means clustering

在线阅读下载全文

作  者:郑直[1,2] 姜万录[1,2] 胡浩松[1,2] 朱勇[1,2] 李扬[1,2] 

机构地区:[1]燕山大学河北省重型机械流体动力传输与控制重点实验室,河北秦皇岛066004 [2]燕山大学先进锻压成形技术与科学教育部重点实验室,河北秦皇岛066004

出  处:《振动工程学报》2015年第2期324-330,共7页Journal of Vibration Engineering

基  金:国家重点基础研究发展计划(973计划)资助项目(2014CB046405);国家自然科学基金资助项目(51475405;51075349);河北省自然科学基金资助项目(E2013203161)

摘  要:针对滚动轴承的故障诊断问题,提出了一种基于集总经验模态分解(EEMD)、形态谱特征提取和核模糊C均值聚类(KFCMC)集成的故障诊断新方法。首先,对实测的滚动轴承振动信号进行EEMD分解,得到若干个代表不同振动模态的内禀模态函数(IMF);其次,基于峭度、能量和均方差三个评价指标,从分解得到的若干个IMF分量中选出含有故障特征信息最丰富的3个IMF分量作为诊断用的数据源;然后在选定尺度范围内提取每个IMF分量的形态谱平均值,将三个形态谱平均值构成一个三维特征向量,作为一个样本,形成样本集;最后,利用KFCMC完成对滚动轴承不同故障的分类识别。此外,为了对比说明该方法的识别效果,还将振动信号用经验模态分解(EMD)方法进行分解,用模糊C均值聚类(FCMC)进行分类识别,结果表明所提方法的识别效果要优于EMD形态谱和FCMC相结合的方法。通过对实测的滚动轴承振动信号的实验验证,表明该方法可以实现对滚动轴承故障的有效诊断。Aiming at the fault diagnosis of rolling bearings,a fusion method based on ensemble empirical mode decomposition (EEMD),morphological spectrum and kernel fuzzy C-means clustering (KFCMC)clustering is proposed.Firstly,a vibration signal is decomposed by EEMD to get several intrinsic mode functions (IMFs)which have physical meanings.Secondly,with a fusion evaluation method based on kurtosis,power and standard deviation,the three IMFs which are rich in fault features are selected as data source,the mean values of morphological spectrums in some scales of the three IMFs are extracted,and then the three values constitute a sample,thus sample set can be got.Lastly,all the samples of different working conditions are clustered by the KFCMC to diagnose the rolling bearing faults.In addition,the signals are also decomposed by empirical mode decomposition (EMD),and the samples are also clustered by fuzzy C-means clustering (FCMC),and the results show that the proposed method performs better than EMD and FCMC.The signals of the rolling bearings are tested and verified,and the conclusion is that the fusion method of EEMD and KFCMC is superior to that of EMD and FCMC.The proposed method can diagnosis the faults of rolling bearings efficiently.

关 键 词:故障诊断 滚动轴承 集总经验模态分解 形态谱 核模糊 C 均值聚类 

分 类 号:TH165.3[机械工程—机械制造及自动化] TP277[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象