Modeling and analysis of the HPM pulse-width upset effect on CMOS inverter  被引量:2

Modeling and analysis of the HPM pulse-width upset effect on CMOS inverter

在线阅读下载全文

作  者:于新海 柴常春 乔丽萍 杨银堂 刘阳 席晓文 

机构地区:[1]Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University

出  处:《Journal of Semiconductors》2015年第5期66-71,共6页半导体学报(英文版)

基  金:Project supported by the National Natural Science Foundation of China(No.60776034);the State Key Development Program for Basic Research of China(No.2014CB339900)

摘  要:We derive analytical models of the excess carrier density distribution and the HPM (high-power mi- crowave) upset susceptibility with dependence of pulse-width, which are validated by the simulated results and experimental data. Mechanism analysis and model derivation verify that the excess carriers dominate the current amplification process of the latch-up. Our results reveal that the excess carrier density distribution in P-substrate behaves as pulse-width dependence. The HPM upset voltage threshold Vp decreases with the incremental pulse- width, while there is an inflection point which is caused because the excess carrier accumulation in the P-substrate will be suppressed over time. For the first time, the physical essence of the HPM pulse-width upset effect is pro- posed to be the excess carrier accumulation effect. Validation concludes that the lip model is capable of giving a reliable and accurate prediction to the HPM upset susceptibility of a CMOS inverter, which simultaneously consid- ers technology information, ambient temperature, and layout parameters. From the model, the layout parameter LB has been demonstrated to have a significant impact on the pulse-width upset effect: a CMOS inverter with minor LB is more susceptible to HPM, which enables us to put forward hardening measures for inverters that are immune from the HPM upset.We derive analytical models of the excess carrier density distribution and the HPM (high-power mi- crowave) upset susceptibility with dependence of pulse-width, which are validated by the simulated results and experimental data. Mechanism analysis and model derivation verify that the excess carriers dominate the current amplification process of the latch-up. Our results reveal that the excess carrier density distribution in P-substrate behaves as pulse-width dependence. The HPM upset voltage threshold Vp decreases with the incremental pulse- width, while there is an inflection point which is caused because the excess carrier accumulation in the P-substrate will be suppressed over time. For the first time, the physical essence of the HPM pulse-width upset effect is pro- posed to be the excess carrier accumulation effect. Validation concludes that the lip model is capable of giving a reliable and accurate prediction to the HPM upset susceptibility of a CMOS inverter, which simultaneously consid- ers technology information, ambient temperature, and layout parameters. From the model, the layout parameter LB has been demonstrated to have a significant impact on the pulse-width upset effect: a CMOS inverter with minor LB is more susceptible to HPM, which enables us to put forward hardening measures for inverters that are immune from the HPM upset.

关 键 词:complementary metal oxide semiconductor upset high power microwave pulse-width 

分 类 号:TN303[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象