3-D numerical investigation of the wall-bounded concentric annulus flow around a cylindrical body with a special array of cylinders  被引量:8

3-D numerical investigation of the wall-bounded concentric annulus flow around a cylindrical body with a special array of cylinders

在线阅读下载全文

作  者:张雪兰 孙西欢 李永业 

机构地区:[1]College of Water Resource and Engineering, Taiyuan University of Technology [2]Shanxi Conservancy Technical College

出  处:《Journal of Hydrodynamics》2015年第1期120-130,共11页水动力学研究与进展B辑(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.51179116,51109155)

摘  要:Concentric annulus flow around a combinational cylindrical body with a special array of cylinders at five high Reynolds numbers is investigated numerically using Fluent 6.3.26 in this paper. The numerical results show a good agreement with the experimental data in regard to the axial velocity of the flow. This study focuses on the flow structure and the hydrodynamic characteristics based on the velocity distribution, the pressure distribution, streamlines and vectors under I-D, 2-D and 3-D condi- tions. Meanwhile, some global parameters including the pressure coefficient, the drag coefficient and the lift coefficient are analyzed. Numerical results show that the high velocity region and the reverse wake zone with low velocity exist in some spaces due to the disturbance of the cylindrical body. Negative pressures appear in some regions. Neither a wide area vortex nor the vortex shedding appears in the wall-bounded domain. The drag along the axial direction is the main force acting on the cylindrical body in the pipe domain. The annulus flow around the cylindrical body is analyzed to reveal the hydrodynamic characteristics of the complex turbule- nt concentric annulus flow field due to the multi-effects in the pipeline.Concentric annulus flow around a combinational cylindrical body with a special array of cylinders at five high Reynolds numbers is investigated numerically using Fluent 6.3.26 in this paper. The numerical results show a good agreement with the experimental data in regard to the axial velocity of the flow. This study focuses on the flow structure and the hydrodynamic characteristics based on the velocity distribution, the pressure distribution, streamlines and vectors under I-D, 2-D and 3-D condi- tions. Meanwhile, some global parameters including the pressure coefficient, the drag coefficient and the lift coefficient are analyzed. Numerical results show that the high velocity region and the reverse wake zone with low velocity exist in some spaces due to the disturbance of the cylindrical body. Negative pressures appear in some regions. Neither a wide area vortex nor the vortex shedding appears in the wall-bounded domain. The drag along the axial direction is the main force acting on the cylindrical body in the pipe domain. The annulus flow around the cylindrical body is analyzed to reveal the hydrodynamic characteristics of the complex turbule- nt concentric annulus flow field due to the multi-effects in the pipeline.

关 键 词:numerical simulation concentric annulus high Reynolds number cylindrical body hydrodynamic characteristics 

分 类 号:O357.5[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象