检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《浙江大学学报(理学版)》2015年第3期303-305,309,共4页Journal of Zhejiang University(Science Edition)
基 金:浙江省自然科学基金资助项目(Y1110808)
摘 要:在逻辑函数布尔c-导数的基础上,引入了布尔c-偏导数的概念.为了简化布尔c-导数及其c-偏导数的计算,提出了基于逻辑函数最小项表的计算方法.该算法用最小项表列出1值最小项的二进制代码,然后对二进制代码中相应位取反变换产生新的最小项,再进行比较并删除新最小项中的重复项来计算c-导数和c-偏导数.实例展示了利用最小项表的计算过程.与代数法和图形法相比,该算法简单有效,当变量数较多时易于计算机编程实现.Based on the c-derivative of Boolean functions, the definition of Boolean c-partial derivative is introduced. Then the minterm tabular method calculating Boolean c-derivative and c-partial derivative is proposed in order to simplify their computing procedure. A few examples of calculating Boolean c-derivative and c-partial derivatives by using tabular method are given and their computational effectiveness of the proposed method is illustrated. Compared with the existed algebraic and graphic methods, the proposed tabular method is not only simple and convenient, but also suitable for computer programming to solve the c-derivative and c^partial derivative when a function is with more variables.
关 键 词:布尔c-导数 布尔c-偏导数 最小项表 故障检测 密码学
分 类 号:TP331[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.191.196