基于虚拟仪器的CAN总线生产监控网络设计  被引量:1

The Construction of Production Supervisory Network Based on Virtual Instrument and CAN-Bus

在线阅读下载全文

作  者:张新良[1] 杜韶 张福平[1] 

机构地区:[1]河南理工大学电气工程与自动化学院,河南焦作454000

出  处:《计算机仿真》2015年第5期323-326,373,共5页Computer Simulation

基  金:河南理工大学青年骨干教师项目(649206);大学生创新创业训练计划项目(201410460079)

摘  要:工农业生产规模的不断扩大,对生产现场的实时监控变得愈加重要。针对传统的组网方式如基于TCP/IP协议的通讯网络等存在组态复杂、实时性差和维护成本高的不足,提出了一种基于CAN总线和LabVIEW虚拟仪器软件的监控网络设计方法。现场智能节点以C51微处理器为控制核心,利用CAN总线技术与现场级监控上位机数据通信,监控现场信息和设备运行状态,具有速度快,精度高和扩展方便的特点。使用DataSocket技术和LabVIEW共享变量技术实现管理级监控中心与现场级监控上位机的数据共享,大大简化系统开发过程,同时提供了与其它应用系统进行数据交换的便捷入口,方便系统升级改造。所提出的方案对构建大型生产过程监控网络具有实际的应用参考价值。The scale expansion of industrial and agricultural production makes the real-time supervision of manu- facturing process even more important. To cope with the shortcomings such as the configuration complexity, poor real -time performance and high maintenance costs along with the TCP/IP protocol based scheme, a supervisory network system based on both the CAN-Bus and the LabVIEW virtual instrument was proposed in this paper. Therein, the CAN-bus was used to realize the Field-Bus Network. Meanwhile, a C51 microprocessor worked as the core in the in- telligent node to supervise the producing spot information and equipment running status, and also communicated with the on-site host computer. It is characterized of the high speed and precision, and also a convenient range extension upon demands. Furthermore, the DataSocket and LabVIEW Shared Variable technology were adopted for the data sharing between the supervisory center and the on-site host computer. It can greatly simplify the development of a large supervisory network with a convenient entrance for the data exchange for further applications. Therefore, it is convenient to upgrade the system. The proposed design is of great reference for the construction of monitoring network for the large-scale production process.

关 键 词:共享变量 智能节点 监控上位机 

分 类 号:TP216.1[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象