珠江三角洲城市短时强降水概率分布模型的对比分析  被引量:11

Comparative Analysis on Probability Distribution Models of Short-time Strong Rainfall in the Cities of Pearl River Delta

在线阅读下载全文

作  者:陈子燊[1] 黄强[1] 李鸿皓[1] 项菁菁[1] 

机构地区:[1]中山大学地理科学与规划学院,广东广州510275

出  处:《中山大学学报(自然科学版)》2015年第2期127-132,140,共7页Acta Scientiarum Naturalium Universitatis Sunyatseni

基  金:国家自然科学基金资助项目(41371498)

摘  要:采用GPD、GEV和Pearson-Ⅲ型3种概率分布模型,对比分析珠江三角洲18个城市短时强降水的概率分布,主要结论如下:1经AD、PPCC、RMSE和Q统计值拟合优度检验结果显示GPD模型普遍优于GEV和PIII型,反映超限量阈值法更适用于观测年限较短站点的极端水文气象事件的设计分位值推算;2花都、广州、新会、恩平、顺德、中山、珠海、深圳8个城市GPD模型的形态参数表明短时强降水出现概率高,且推算的设计降水大于GEV和P-III相应设计值;3参考相关"短时临近降雨强度等级划分"标准,珠江三角洲两年一遇短时强降水雨强即可达特大暴雨级别,是导致城市内涝的主要影响因子。The probability distribution applicability of short-time strong rainfall for 18 cities in the Pearl River Delta were contrastively analyzed by Using GPD,GEV and Pearson-Ⅲtype probability distribution model,respectively.The main conclusions were reached in the following:① The results of goodness of fit test using Anderson-Darling test,probability plot correlation coefficient (PPCC),Root Mean Square Error (RMSE)and Q statistic reflected that the GPD method is more suitable for the design quantile cal-culation of the extreme hydrological and meteorological events for the shorter fixed number of year of the observation sites;② The shape parameters of the GDP models for the cities of Huadu,Guangzhou,Xin-hui,Enping,Shunde,Zhongshan,Zhuhai and Shenzhen show that the occurrence probabilities of short-time strong rainfall are high,and the calculated the design precipitation intensity larger than that with GEV and P-III type models;③Referring to “near short-term rainfall intensity hierarchies”standard,in the Pearl River Delta,the rainfall intensity in a period of 2 years can reach the torrential rain level, which is the main influence factor for urban waterlogging events.

关 键 词:概率分布模型 拟合优度检验 短时强降水 珠江三角洲城市 

分 类 号:P333.6[天文地球—水文科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象