检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:石怀龙[1] 宋烨[1] 邬平波[1] 曾京[1] 朱海燕[1,2]
机构地区:[1]西南交通大学牵引动力国家重点实验室,成都610031 [2]华东交通大学轨道交通学院,南昌330013
出 处:《吉林大学学报(工学版)》2015年第3期776-782,共7页Journal of Jilin University:Engineering and Technology Edition
基 金:'十一五'国家科技支撑计划项目(2009BAG12A02);'十二五'国家科技支撑计划项目(2011BAG10B01);'973'国家重点基础研究发展计划项目(2011CB711100);教育部创新团队发展计划项目(IRT1178);教育部新世纪优秀人才支持计划项目(NCET-10-0064)
摘 要:建立了车辆系统数学模型,理论分析了影响转向架悬挂刚度的主要参数,并利用参数试验台对某高速动车组进行悬挂刚度测试,总结了不同条件下的结果分布规律,以验证数学模型和理论分析的可信性。理论分析结果表明:在小半径曲线条件下,转向架回转阻力系数随着空簧纵向刚度及其横向跨距的变化而显著变化,转向架回转刚度和车辆抗侧滚刚度应联合设计。一、二系悬挂刚度试验结果略大于理论值,最大相差11%,表明车辆组装后进行参数校验的必要性。试验表明:回转阻力系数与偏转角度和转动速度成正比。曲线半径为300 m且空簧有气时,转动速度为0.05°/s和0.2°/s时的回转阻力系数分别为0.023和0.065,空簧无气时分别为0.068和0.095,即转动速度越快,回转刚度越大,且空簧无气时的结果显著大于空簧有气时,表明车辆在空簧无气且快速通过小半径曲线时为危险工况。转向架回转刚度的试验值大于理论值,表明在理论计算时应考虑空簧动态刚度特性及其他部件(如抗侧滚扭杆、减振器等)对转向架回转刚度的影响。A mathematical model of EMU was established to analyze effects of suspension parameters on the suspension stiffness of the bogie. Then lab test was conducted to measure the actual suspension stiffness, which is used to verify the theoretical calculation results. The characteristics and distributions of the suspension stiffness under various conditions were summarized. Theoretical analysis shows that the rotation resistance factor of the bogie fluctuates greatly with the longitudinal stiffness of air springs and the lateral distance between two air springs, especially for small radius curves. Therefore, the rotation stiffness of the bogie and the anti-rolling stiffness of the vehicle should be considered simultaneously in the vehicle design stage. Test results of the primary suspension and second suspension stiffness are both a bit higher than the calculated stiffness with maximum error of 11%, which suggests that parameter verification after the assembling is essentialand necessary. The test results also show that the greater are the rational angle and speed, the greater is rotation resistance factor. For a 300 m radius curve at inflated state, the rotation resistance factor is 0. 023 with rotational speed of 0.05 °/s, and the resistance factor is 0. 065 with rotational speed of 0.2 °/s, indicating that the higher is the speed, the greater is the rotation stiffness. However, at deflated state the corresponding resistance factor is 0. 068 and 0. 095, much greater than that at inflated state. We can be concluded that it is very dangerous when a vehicle passes small radius curve at high speed. The text results of rotation stiffness of the bogie are greater than calculated ones,and the dynamic characteristics of air spring stiffness and other suspension components should all be considered in theoretial calculations.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46