检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Mathematics and Statistics, Central China Normal University
出 处:《Acta Mathematica Sinica,English Series》2015年第6期893-912,共20页数学学报(英文版)
基 金:Supported by NSFC(Grant No.11301204);the Ph D specialized grant of the Ministry of Education of China(Grant No.20110144110001);the excellent doctorial dissertation cultivation grant from Central China Normal University(Grant No.2013YBZD15)
摘 要:In this paper, we study the existence and nonexistence of multiple positive solutions for the following problem involving Hardy-Sobolev-Maz'ya term:-Δu-λ u/|y|2 = (|u|pt-1u)/|y|t + μf(x), x∈ Ω,where Ω is a bounded domain in RN(N ≥ 2), 0 ∈ Ω, x = (y, z) ∈ Rk ×RN-k and pt = (N+2-2t)/(N-2) (0 ≤ t ≤ 2). For f(x) ∈ C1(Ω)/{0}, we show that there exists a constant μ* 〉0 such that the problem possesses at least two positive solutions if μ ∈ (0, μ*) and at least one positive solution if μ = μ*. Furthermore, there are no positive solutions if μ ∈ (μ*,+∞).In this paper, we study the existence and nonexistence of multiple positive solutions for the following problem involving Hardy-Sobolev-Maz'ya term:-Δu-λ u/|y|2 = (|u|pt-1u)/|y|t + μf(x), x∈ Ω,where Ω is a bounded domain in RN(N ≥ 2), 0 ∈ Ω, x = (y, z) ∈ Rk ×RN-k and pt = (N+2-2t)/(N-2) (0 ≤ t ≤ 2). For f(x) ∈ C1(Ω)/{0}, we show that there exists a constant μ* 〉0 such that the problem possesses at least two positive solutions if μ ∈ (0, μ*) and at least one positive solution if μ = μ*. Furthermore, there are no positive solutions if μ ∈ (μ*,+∞).
关 键 词:Hardy-Sobolev-Maz'ya inequality Mountain Pass Lemma positive solutions subsolutionand supersolution
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222