机构地区:[1]Institute of Plasma Physics,Chinese Academy of Sciences
出 处:《Plasma Science and Technology》2015年第5期435-440,共6页等离子体科学和技术(英文版)
基 金:supported by National Basic Research Program of China(973 Program)(No.2013GB102000)
摘 要:An orthogoual experimental scheme was designed for optimizing a water-cooled structure of the divertor plate. There were three influencing factors: the radius R of the water- cooled pipe, and the pipe spacing L1 and L3. The influence rule of different factors on the cooling effect and thermal stress of the plate were studied, for which the influence rank was respectively R 〉 L1 〉 L3 and L3 〉 R 〉 L1. The highest temperature value decreased when R and L1 increased~ and the maximum thermal stress value dropped when R, L1 and L3 increased. The final optimized results can be summarized as: R equals 6 mm or 7 mm, L1 equals 19 mm, and L3 equals 20 mm. Compared with the initial design, the highest temperature value had a small decline~ and the maximum thermal stress value dropped by 19~ to 24~. So it was not ideal to improve the cooling effect by optimizing the geometry sizes of the water-cooled structure, even worse than increasing the flow speed, but it was very effective for dropping the maximum thermal stress value. The orthogoaal experimental method reduces the number of experiments by 80%, and thus it is feasible and effective to optimize the water-cooled structure of the divertor plate with the orthogonal theory.An orthogoual experimental scheme was designed for optimizing a water-cooled structure of the divertor plate. There were three influencing factors: the radius R of the water- cooled pipe, and the pipe spacing L1 and L3. The influence rule of different factors on the cooling effect and thermal stress of the plate were studied, for which the influence rank was respectively R 〉 L1 〉 L3 and L3 〉 R 〉 L1. The highest temperature value decreased when R and L1 increased~ and the maximum thermal stress value dropped when R, L1 and L3 increased. The final optimized results can be summarized as: R equals 6 mm or 7 mm, L1 equals 19 mm, and L3 equals 20 mm. Compared with the initial design, the highest temperature value had a small decline~ and the maximum thermal stress value dropped by 19~ to 24~. So it was not ideal to improve the cooling effect by optimizing the geometry sizes of the water-cooled structure, even worse than increasing the flow speed, but it was very effective for dropping the maximum thermal stress value. The orthogoaal experimental method reduces the number of experiments by 80%, and thus it is feasible and effective to optimize the water-cooled structure of the divertor plate with the orthogonal theory.
关 键 词:orthogonal theory divertor plate water-cooled structure cooling effect thermal stress OPTIMIZATION
分 类 号:TL631.24[核科学技术—核技术及应用]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...