ASYMPTOTIC BEHAVIOR OF THE STOKES APPROXIMATION EQUATIONS FOR COMPRESSIBLE FLOWS IN R^3  被引量:1

ASYMPTOTIC BEHAVIOR OF THE STOKES APPROXIMATION EQUATIONS FOR COMPRESSIBLE FLOWS IN R^3

在线阅读下载全文

作  者:吴云顺 谭忠 

机构地区:[1]School of Mathematical Sciences,Xiamen University [2]School of Mathematics and Computer Science,Guizhou Normal University

出  处:《Acta Mathematica Scientia》2015年第3期746-760,共15页数学物理学报(B辑英文版)

基  金:Supported by National Natural Science Foundation of China(11271305,11161011);Science and Technology Foundation of Guizhou Province of China(LKS[2012]11,LKS[2013]03,LKS[2013]05)

摘  要:We consider the Stokes approximation equations for compressible flows in /~3. The global unique solution and optimal convergence rates are obtained by pure energy method provided the initial perturbation around a constant state is small. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained. As an imme- diate byproduct, the usual Lp - L2(1 〈 p 〈 2) type of the optimal decay rate follow without requiring that the Lp norm of initial data is small.We consider the Stokes approximation equations for compressible flows in /~3. The global unique solution and optimal convergence rates are obtained by pure energy method provided the initial perturbation around a constant state is small. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained. As an imme- diate byproduct, the usual Lp - L2(1 〈 p 〈 2) type of the optimal decay rate follow without requiring that the Lp norm of initial data is small.

关 键 词:Stokes approximation equations energy method optimal decay rates Sobolevinterpolation negative Sobolev space 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象