机构地区:[1]State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry,Chinese Academy of Sciences [2]University of Chinese Academy of Sciences
出 处:《Chinese Journal of Polymer Science》2015年第7期1000-1008,共9页高分子科学(英文版)
基 金:financially supported by the National Natural Science Foundation of China(Nos.20734006 and 50921062)
摘 要:A series of copolymers of ethylene with 1-hexene synthesized using a metallocene catalyst are selected and mixed. The blend is fractionated via preparative temperature rising elution fractionation(P-TREF). All fractions are characterized via high-temperature gel permeation chromatography(GPC), 13 C nuclear magnetic resonance spectroscopy(13C-NMR), and differential scanning calorimetry(DSC). The changes in the DSC melting peak temperatures of the fractions from P-TREF as a function of elution temperature are almost linear, thereby providing a reference through which the elution temperature of TREF experiments could be selected. Moreover, the standard calibration curve(ethylene/1-hexene) of P-TREF is established, which relates to the degree of short-chain branching of the fractions. The standard calibration curve of P-TREF is beneficial to study on the complicated branching structure of polyethylene. A convenient method for selecting the fractionation temperature for TREF experiments is elaborated. The polyethylene sample is fractionated via successive self-nucleation and annealing(SSA) thermal fractionation. A multiple-melting endotherm is obtained through the final DSC heating scan for the sample after SSA thermal fractionation. A series of fractionation temperatures are then selected through the relationship between the DSC melting peak temperature and TREF elution temperature.A series of copolymers of ethylene with 1-hexene synthesized using a metallocene catalyst are selected and mixed. The blend is fractionated via preparative temperature rising elution fractionation(P-TREF). All fractions are characterized via high-temperature gel permeation chromatography(GPC), 13 C nuclear magnetic resonance spectroscopy(13C-NMR), and differential scanning calorimetry(DSC). The changes in the DSC melting peak temperatures of the fractions from P-TREF as a function of elution temperature are almost linear, thereby providing a reference through which the elution temperature of TREF experiments could be selected. Moreover, the standard calibration curve(ethylene/1-hexene) of P-TREF is established, which relates to the degree of short-chain branching of the fractions. The standard calibration curve of P-TREF is beneficial to study on the complicated branching structure of polyethylene. A convenient method for selecting the fractionation temperature for TREF experiments is elaborated. The polyethylene sample is fractionated via successive self-nucleation and annealing(SSA) thermal fractionation. A multiple-melting endotherm is obtained through the final DSC heating scan for the sample after SSA thermal fractionation. A series of fractionation temperatures are then selected through the relationship between the DSC melting peak temperature and TREF elution temperature.
关 键 词:TREF Calibration curve Fractionation temperature SSA Polyethylene
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...