检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭凌云[1]
机构地区:[1]河南师范大学计算机与信息工程学院,河南新乡453007
出 处:《福建电脑》2015年第5期92-93,47,共3页Journal of Fujian Computer
摘 要:强化学习是Agent通过试错与环境交互改进动作策略,单Agent强化学习能够进行自学习和在线学习,单Agent的知识和资源是有限的,多个Agent强化学习是求解复杂问题的有效途径。多Agent系统比单Agent具有更强的问题求解能力,但多Agent的参与又增加了问题的复杂性。本文分析了多Agent强化学习方法的研究现状,总结了目前存在的主要问题及其解决方法,最后介绍了多Agent技术在实际问题中的部分应用。
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200