机构地区:[1]State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University [2]School of Engineering, Liverpool John Moores University
出 处:《Journal of Rare Earths》2015年第6期671-678,共8页稀土学报(英文版)
基 金:supported by National Natural Science Foundation of China(51271163,51471148)
摘 要:The Fe-Cr-C flux-cored wires with 0 wt.%, 0.63 wt.%, 2.54 wt.% and 5.08 wt.% additions of nano-Y203 were developed in this work. And the different hypereutectic Fe-Cr-C hardfacing coatings were prepared. The phase structures of the coatings were determined by X-ray diffraction. The microstructures were observed by optical microscopy. The morphologies of the hypereutectic Fe-Cr-C hardfacing coatings were observed by a field emission scanning electron microscope equipped with an X-ray energy disper- sive spectrometer. The effectiveness ofY203 as heterogeneous nuclei of primary M7C3 was calculated with the misfit theory. The ex- periment results showed that, the microstructures of the hypereutectic Fe-Cr-C hardfacing coatings consisted of M7C3, ?-Fe and a-Fe phases. With the increase of nano-Y203 additives, primary M7C3 in hypereutectic Fe-Cr-C coatings could be refined gradually. The average size of the primary M7C3 was the minimum, which was 22 pro, when nano-Y203 additive was 2.54 wt.%. The calculated re- sults showed that, the two-dimensional lattice misfit between the face (001) of Y203 and face (100) of orthorhombic M7C3 was 4.911%, which indicated that Y203 as heterogeneous nuclei of M7C3 was middle effective to refine the primary M7C3.The Fe-Cr-C flux-cored wires with 0 wt.%, 0.63 wt.%, 2.54 wt.% and 5.08 wt.% additions of nano-Y203 were developed in this work. And the different hypereutectic Fe-Cr-C hardfacing coatings were prepared. The phase structures of the coatings were determined by X-ray diffraction. The microstructures were observed by optical microscopy. The morphologies of the hypereutectic Fe-Cr-C hardfacing coatings were observed by a field emission scanning electron microscope equipped with an X-ray energy disper- sive spectrometer. The effectiveness ofY203 as heterogeneous nuclei of primary M7C3 was calculated with the misfit theory. The ex- periment results showed that, the microstructures of the hypereutectic Fe-Cr-C hardfacing coatings consisted of M7C3, ?-Fe and a-Fe phases. With the increase of nano-Y203 additives, primary M7C3 in hypereutectic Fe-Cr-C coatings could be refined gradually. The average size of the primary M7C3 was the minimum, which was 22 pro, when nano-Y203 additive was 2.54 wt.%. The calculated re- sults showed that, the two-dimensional lattice misfit between the face (001) of Y203 and face (100) of orthorhombic M7C3 was 4.911%, which indicated that Y203 as heterogeneous nuclei of M7C3 was middle effective to refine the primary M7C3.
关 键 词:nano-Y203 hypereutectic Fe-Cr-C coatings primary M7C3 hardfacing misfit rare earths
分 类 号:TG174.4[金属学及工艺—金属表面处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...