检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵斌[1,2] 么强[2] 王庆功[1] 卢闪 吕俊复[1] 岳光溪[1]
机构地区:[1]清华大学热能工程系热科学与动力工程教育部重点实验室,北京100084 [2]河北联合大学现代冶金技术教育部重点实验室,河北唐山063009
出 处:《中国矿业大学学报》2015年第2期326-331,共6页Journal of China University of Mining & Technology
基 金:国家重点基础研究发展计划(973)项目(2012CB214904)
摘 要:了解炼焦煤的原始粒度分布,有益于改善焦化工序的安全经济性.以500 μm为分级粒度,采用Wen-Chen模型、CPFD数值模拟,结合气固流化床分级试验对分级过程进行研究.结果表明:当流化风速为3.27 m/s时,粗、细颗粒分离效果最为显著,上排逃逸细颗粒中目标粒子含量高达99.7%,下排成品煤中目标粒子含量仅为28.7%.上排逃逸细颗粒的Wen-Chen模型预测值和数值模拟值同试验结果相比的最大偏差分别为16.18%和7.08%,下排成品煤的Wen-Chen模型预测值和数值模拟值同试验结果相比的最大偏差分别为27.25%和9.25%.模拟结果发现,对目标粒子含量分级影响最大的颗粒粒径为1 500~2 000 μm.To realize particle size distribution of coking coal will improve the economy and safe- ty of the coking process. With 500 μm as a target classification size, the particles classification in a fluidized bed was studied using experimental measurements, Wen-Chen model prediction and CPFD numerical simulation. The results show that the best classification effect occurred under a fluidizing air velocity of 3.27 m/s. The content of coal particles was 99.7% in the fine escaping samples, and only 28.7% in the discharged samples. Compared with the experimental value, for the fine escaping samples, the maximum deviation of prediction values by Wen-Chen model and CPFD numerical simulation was 16. 18% and 7. 08%, respectively. For the dis- charged samples, the maximum deviation was 27.25% and 9.25%, respectively. The numeri- cal simulation results also show that the coal sample of 1 500~2 000 μm is the most effective on the classification effect.
关 键 词:炼焦煤 分级 气固流化床 Wen-Chen模型
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30