Trivial and Simple Spectrum for SL(d,R) Cocycles with Free Base and Fiber Dynamics  

Trivial and Simple Spectrum for SL(d,R) Cocycles with Free Base and Fiber Dynamics

在线阅读下载全文

作  者:Mrio BESSA Paulo VARANDAS 

机构地区:[1]Departamento de Matemtica,Universidade da Beira Interior,Rua Marquês d'vila e Bolama,6201-001 Covilh,Portugal [2]Departamento de Matemtica,Universidade Federal da Bahia,Av.Ademar de Barros s/n,40170-110 Salvador,Brazil

出  处:《Acta Mathematica Sinica,English Series》2015年第7期1113-1122,共10页数学学报(英文版)

基  金:Supported by FCT-Fundao para a Ciência e a Tecnologia and CNPq-Brazil(Grant No.PEst-OE/MAT/UI0212/2011)

摘  要:Let ACD(M, SL(d,R)) denote the pairs (f, A) so that f∈ A C Diff^1(M) is a C^1-Anosov transitive diffeomorphisms and A is an SL(d,R) cocycle dominated with respect to f. We prove that open and densely in ACD(M, SL(d,R)), in appropriate topologies, the pair (f,A) has simple spectrum with respect to the unique maximal entropy measure μf. Then, we prove prevalence of trivial spectrum near the dynamical cocycle of an area-preserving map and also for generic cocycles in AUtLeb(M) × LP(M, SL(d, R)).Let ACD(M, SL(d,R)) denote the pairs (f, A) so that f∈ A C Diff^1(M) is a C^1-Anosov transitive diffeomorphisms and A is an SL(d,R) cocycle dominated with respect to f. We prove that open and densely in ACD(M, SL(d,R)), in appropriate topologies, the pair (f,A) has simple spectrum with respect to the unique maximal entropy measure μf. Then, we prove prevalence of trivial spectrum near the dynamical cocycle of an area-preserving map and also for generic cocycles in AUtLeb(M) × LP(M, SL(d, R)).

关 键 词:Linear cocycles Lyapunov exponents Anosov diffeomorphisms topological conjugacy maximal entropy measures 

分 类 号:O186.12[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象