检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陶元红[1,2] 杨强[2] 张军[2] 南华[2] 李林松[2]
机构地区:[1]首都师范大学数学科学学院,北京100048 [2]延边大学理学院数学系,延吉133002
出 处:《中国科学:物理学、力学、天文学》2015年第6期74-82,共9页Scientia Sinica Physica,Mechanica & Astronomica
基 金:国家自然科学基金(批准号:11361065);吉林省自然科学基金(编号201215239)资助项目
摘 要:本文研究了两体系统CdCkd(k∈Z+)中无偏的最大纠缠基的构造方法.首先利用无偏基的定义分析了CdCkd中两个最大纠缠基无偏的充分必要条件,然后利用此条件将CdCkd中无偏基的构造问题简化成Ck空间中幺正矩阵的选择问题,进而证明了CdCkd(d=2,3,4;k∈Z+)中的无偏的最大纠缠基的存在性,并给出了两个非素数幂维系统C2C6和C3C6中无偏最大纠缠基的具体形式.In this paper, we study the concrete construction of mutually unbiased maximally entangled bases in bipartite systems Cd□ Ckd (k ∈ Z+ ). We first analyze and simplify the sufficient and necessary conditions of two maximally entangled bases to be mutually unbiased in Cd □ Ckd, then we use matrix forms to illustrate these conditions in C2 □ C2k and C3 □ C3k and generalize them in Cd □ Ckd. Thus we find that the sufficient and necessary conditions of two maximally entangled bases to be mutually unbiased in Cd □ Ckd are translating to the conditions of transit matrices Tkd between two orthonormal bases in C^d satisfy, that is, Tkd can be divided into k2 submatrices of d x d satisfying same equations. So the problem of constructing mutually unbiased maximally entangle bases in cd □Ckd (k ∈ Z+) are changing to the choice of transit matrices in Ckd. According the above equations of transit matrices in Ckd, we first construct two transit matrices in C2, C3 and C4, then we find that using any unitary matrix with nonzero entities in Ck to tensor product the above chosen transit matrices in Cd(d = 2, 3,4) from left, we can easily get the transit matrices in Ckd. Hence the choice of transit matrices in Ckd is changing to the choice of unitary matrices with nonzero entities in Ck. Until now, the problem of constructing mutually unbiased maximally entangled bases in Cd □ Ckd is really simplified to the choice of unitary matrices in Ck. Since the unitary matrices with nonzero entities in Ck are always exist, we can confirm that mutually unbiased maximally entangled bases in Cd □ Ckd (d = 2, 3,4;k ∈ Z+) always exist. Based on the two transit matrices we construct in each space in Ckd (d = 2, 3,4; k = 1,2, 3), we want to describe the concrete construction of two mutually unbiased maximally entangled bases in Cd □ Ckd (d = 2, 3,4; k = 1,2, 3). As examples, we present a pair of mutually unbiased maximally entangled bases in C2 □ C6 and C3 □ C6, whose dimensions are not pri
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.59.186