检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尹训飞 齐鲁[1] 张晓军[1] 何志江[1] 张源凯[1] 王洪臣[1]
出 处:《水处理技术》2015年第6期75-78,共4页Technology of Water Treatment
基 金:"水体污染控制与治理"国家科技重大专项(2013ZX07314-001)
摘 要:以中试规模研究了不同水深下微孔曝气充氧性能的变化,并通过欧拉两相流及标准k-ε湍流模型对曝气过程进行了三维稳态流数值模拟,经获得不同水深下微孔曝气充氧性能的变化规律。结果表明,曝气水深为1~6 m时,标准氧总转移系数(KLas)随着水深的增大先减小后趋于不变,氧转移速率(SOTR)随着水深的增大而增大,氧利用率(SOTE)随着水深的增大呈现线性增大。数值模拟结果表明:水深为1 m时,湍动动能沿竖直中心线逐渐降低,水深为3~6 m时,湍动动能沿竖直中心线先增大后降低;气含率的分布随着水深的增大而逐渐均匀,曝气池中心横截面线气含率随着水深的增大而降低。Effect of the water depth on oxygenation performance in a pilot-scale fine bubble aeration system was evaluated by using computational fluid dynamics simulation technique. The results showed that when the depth of water increasing in range of 1-6 m, the standard oxygen transfer coefficient (KLan) firstly increased and then tended to be steady, the standard oxygen transfer rate (SOTR) increased and the standard oxygen transfer efficiency (SOTE) presented the linear increase. The results of numerical simulation showed that when the depth was 1 m, turbtflent kinetic energy gradually decreased along the vertical centerline. When the depth was 3-6 m, the turbulent kinetic energy increased first and then decreased along the vertical centerline. With the depth of water increasing, the gas holdup distributed gradually uniformly and that in aeration tank centerline cross section decreased.
关 键 词:充氧性能 水深 标准氧总转移系数 氧利用率 湍动动能
分 类 号:X703.1[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.160.127