检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:熊微[1] 施春阳[1] 王文清[1] 方建国[1] 赵彦兵[2] 杨祥良[2]
机构地区:[1]华中科技大学同济医学院附属同济医院药学部,湖北武汉430030 [2]华中科技大学生命科学与技术学院,湖北武汉430074
出 处:《中国医院药学杂志》2015年第10期897-902,共6页Chinese Journal of Hospital Pharmacy
基 金:湖北省自然科学基金项目(编号:2011CDB210)
摘 要:目的:制备离子型N-异丙基丙烯酰胺(NIPAM)类温敏纳米凝胶用于静电吸附载药。方法:分别采用乳液聚合(EP)、种子乳液聚合(SEP)和无皂乳液聚合(SFEP)法将NIPAM与丙烯酸(AA)或甲基丙烯酸β-硫酸乙基酯(SEMA)共聚制成纳米凝胶,通过TEM、PCS、电位滴定等方法表征各凝胶颗粒的形貌尺寸、温敏行为及单体含量。以阿霉素为模型药物,考察纳米凝胶通过静电吸附载药的能力。结果:EP或SEP法制备的AA凝胶(PNA)单分散性和温敏性良好,单体能完全参与聚合,当温度从20℃升至45℃时,粒径约从100 nm降至50 nm。EP法制备的SEMA凝胶(PNS)单分散性较差,改用SFEP法能提高凝胶的单分散性,但是约40%单体没有参与共聚。PNS凝胶的温敏性仍得到保留,20~45℃下粒径约为200~140 nm。核-壳型纳米凝胶的载药量和包封率最低,随着交联密度的增大,PNA纳米凝胶的载药量也相应提高。PNS纳米凝胶的载药量和包封率分别为14.6%和85.3%,载药能力最强,约为PNA纳米凝胶的2~3倍。PNS纳米凝胶负载的药物在纯水中24 h不释放,在生理盐水中约2 h释放完全。结论:PNS纳米凝胶粒径均一,具有温敏性,载药性能好,有望成为一个智能响应性纳米药物载体。OBJECTIVE To prepare N-isopropylacrylamide (NIPAM) based thermosensitive ionic nanogels for drug loading by electrostatic adsorption. METHODS The emulsion polymerization (EP), seed emulsion polymerization (SEP) and soap- free emulsion polymerization (SFEP) were used to prepare nanogels by copolymerization of NIPAM with acrylic acid (AAe) or β-sulfatoethyl methacrylate (SEMA). The morphology, size, temperature-sensitivity and co-monomer content of obtained nanogels were characterized by TEM, PCS and potentiometrie titration. Their drug loading capacity by electrostatic adsorption was also evaluated using doxoruhicin as a model drug. RESULTS AAc nanogels (PNA) prepared by EP or SEP which the co- monomers could fully participate in polymerization, had a high monodispersity and temperature-sensitivity that was about 100- 50 nm of particles size in the range of 20 - 45 ℃. Compared with low monodispersity of SEMA nanogels (PNS) prepared by EP, PNS nanogeis synthesized by SFEP had a better monodispersity and retained the temperature-sensitivity that was about 200 - 140 nm of particles size in the same temperature range. Meanwhile, about 40% of co-monomer was not copolymerized in to PNS nanogels. The drug-loading and encapsulation efficiencies were lowest for core-shell nanogels, and increased with the nanogels cross-linking density. PNS nanogels had highest drug loading capacity, and the drug loading rate and encapsulation ef- ficiency were 14. 6% and 85. 3%, respectively, about 2 to 3 times higher than PNA nanogels. The loaded-drug was not re- leased in water in 24 h, but was completely released in have uniform particle size, high drug loading capacity, sive drug carriers. physiological saline solution in 2 h. CONCLUSION PNS nanogels which and temperature sensitivity, are expected to become intelligent respon-sive drug carriers.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.126