检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]福建师范大学数学与计算机科学学院,福州350007
出 处:《计算机系统应用》2015年第6期100-107,共8页Computer Systems & Applications
摘 要:提出了一种基于法矢控制的B样条曲面逼近的渐进迭代逼近(PIA)算法.一方面该方法将离散数据点的切失、曲率、法矢等几何特征充分应用到离散数据点的逼近问题上,利用数据点两个方向的切矢构造出数据点的法矢约束来控制逼近曲面形状,相比于无法矢控制的B样条曲面逼近的渐进迭代逼近(PIA)方法,逼近曲面更光顺,可获得更好的逼近效果.另一方面由于该算法选取主特征点作为控制顶点,所以允许在曲面拟合中控制顶点的数目小于数据点的数目.而且PIA算法的每次迭代过程中的各个步骤都是独立的,很容易被应用到并行计算上,可提高计算效率.本文还给出了一些实例来验证该算法的有效性.In this paper, we propose a progressive iterative approximation (PIA) algorithm for B-spline surface approximation with normal constraint. On the one hand, the discrete data points of the tangent vector, normal vector, curvature and other geometric characteristics are fully applied to the approximation problem of discrete data points, using the two directions of the tangent vector to construct normal constraint can avoid unnecessary fluctuations, and obtain better approximation effect. On the other hand, the number of selecting feature points is less than the number of data points, so the PIA algorithm can be used for the approximation of the mass of discrete data points. The steps in the process of each iteration of the algorithm are independent, which is easy to be applied to the parallel computing, which greatly improve the computational efficiency. Some examples are given to show the validity, of the algorithm.
关 键 词:渐进迭代逼近 B样条曲面 主特征点 切矢 法矢 调整差向量 曲率
分 类 号:TP391.7[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.72.238