Electron content near the lunar surface using dual-frequency VLBI tracking data in a single lunar orbiter mission  

Electron content near the lunar surface using dual-frequency VLBI tracking data in a single lunar orbiter mission

在线阅读下载全文

作  者:Zhen Wang Na Wang Jin-Song Ping 

机构地区:[1]Key Laboratory of Radio Astronomy, Xinjiang Astronomical Observatory, Chinese Academy of Sciences [2]Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories,Chinese Academy of Sciences

出  处:《Research in Astronomy and Astrophysics》2015年第5期753-763,共11页天文和天体物理学研究(英文版)

摘  要:In VLBI observations of Vstar, a subsatellite of the Japanese lunar mission SELENE, there were opportunities for lunar grazing occultation when Vstar was very close to the limb of the Moon. This kind of chance made it possible to probe the thin plasma layer above the Moon's surface as a meaningful by-product of VLBI, by using the radio occultation method with coherent radio waves from the S/X bands. The dual-frequency measurements were carried out at Earth-based VLBI stations. In the line-of-sight direction between the satellite and the ground-based tracking station where VLBI measurements were made, the effects of the terrestrial ionosphere, interplanetary plasma and the thin lunar ionosphere mixed together in the combined observables of dual-frequency Doppler shift and phase shift. To separate the variation of the ionospheric total electron content (TEC) near the surface of the Moon from the mixed signal, the influences of the terrestrial ionosphere and interplanetary plasma have been removed by using an extrapolation method based on a short-term trend. The lunar TEC is estimated from the dual-frequency observation for Vstar from UT 22:18 to UT 22:20 on 2008 June 28 at several tracking stations. The TEC results obtained from VLBI sites are identical, however, they are not as remarkable as the result obtained at the Usuda deep space tracking station.In VLBI observations of Vstar, a subsatellite of the Japanese lunar mission SELENE, there were opportunities for lunar grazing occultation when Vstar was very close to the limb of the Moon. This kind of chance made it possible to probe the thin plasma layer above the Moon's surface as a meaningful by-product of VLBI, by using the radio occultation method with coherent radio waves from the S/X bands. The dual-frequency measurements were carried out at Earth-based VLBI stations. In the line-of-sight direction between the satellite and the ground-based tracking station where VLBI measurements were made, the effects of the terrestrial ionosphere, interplanetary plasma and the thin lunar ionosphere mixed together in the combined observables of dual-frequency Doppler shift and phase shift. To separate the variation of the ionospheric total electron content (TEC) near the surface of the Moon from the mixed signal, the influences of the terrestrial ionosphere and interplanetary plasma have been removed by using an extrapolation method based on a short-term trend. The lunar TEC is estimated from the dual-frequency observation for Vstar from UT 22:18 to UT 22:20 on 2008 June 28 at several tracking stations. The TEC results obtained from VLBI sites are identical, however, they are not as remarkable as the result obtained at the Usuda deep space tracking station.

关 键 词:planets and satellites atmospheres -- occultations --detection 

分 类 号:P184.5[天文地球—天文学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象