矢量C-V模型的高光谱遥感影像分割  被引量:5

Segmentation of hyperspectral remote sensing image using vector C-V model

在线阅读下载全文

作  者:王相海[1,2] 周夏[1] 方玲玲[1] 

机构地区:[1]辽宁师范大学计算机与信息技术学院,辽宁大连116029 [2]辽宁师范大学自然地理与空间信息科学辽宁重点实验室,辽宁大连116029

出  处:《遥感学报》2015年第3期443-450,共8页NATIONAL REMOTE SENSING BULLETIN

基  金:国家自然科学基金(编号:41271422;62402214);高等学校博士学科点专项科研基金(编号:20132136110002);辽宁省博士科研启动基金(编号:20121076);辽宁省教育厅科学研究一般项目(编号:L2013405;L2014423);智能计算与信息处理教育部重点实验室(湘潭大学)开放课题(编号:2011ICIP06)

摘  要:高光谱遥感影像除了包含普通2维影像所具有的空间信息还包含了1维光谱信息,传统的针对2维影像的分割方法不能很好地应用于高光谱遥感影像。为此,本文提出一种能够同时处理多波段影像的高光谱遥感影像矢量C-V模型分割方法。首先选出高光谱遥感影像中目标与背景对比度较大的波段,并通过计算波段相关系数,去除其中的冗余信息形成新的波段组合,进而根据所确定的波段组合构建高光谱遥感影像矢量矩阵;在此基础上,构造基于该矢量矩阵的矢量C-V分割模型。模型中通过引入基于梯度的边缘引导函数,在保留传统C-V模型基于区域信息进行影像分割的基础上,利用影像的边缘细节信息,增强了模型在异质区域和复杂背景情况下对目标边缘的捕捉能力,提高了对高光谱遥感影像的分割精度和速度。最后利用HYPERION数据进行仿真实验,并将实验结果和传统C-V模型和相关方法进行了对比,结果表明,本文方法能够在短时间内有效地分割高光谱遥感影像,与传统方法相比,具有分割精度更高运算速度更快的特点。This study on the vector C-V model and hyperspectral remote sensing image aims is to segment a hyperspectral remote sensing image. A hyperspectral remote sensing image contains not only general two-dimensional image spatial information but also have one-dimensional spectrum information. Thus,traditional methods of two-dimensional image segmentation are unsuitable for hyperspectral remote sensing images. To solve this problem,we propose a hypespectral remote sensing image vector C-V model segmentation method based on band selection,which can deal with the multiband images at the same time. Method First,bands of goals and backgrounds contrast that exhibit a significant contrast were chosen based on the band correlation coefficient. Then,the greater relevance band-by-band correlation coefficient was removed,and a new band combination was formed. Finally,a hyperspectral remote sensing image vector matrix was built. On these basis,we can construct a vector C-V model that takes full advantage of this vector matrix while introducing a gradient-based edge guide function. Result Numerical experiments were conducted on HYPERION data,and these experiments were compared with the traditional C-V model and Wang Jin method. The result shows that the proposed method can immediately segment a hyperspectal remote sensing image effectively,and it not only has a lower fasepositive ratio and false-negative ratio but also a smaller error ratio. These results prove that the segmentation of the proposed model is more effective than that of the traditional C-V model and Wang Jin method. In sum,compared with the traditional C-V model and Wang Jin method,the proposed model improved the segmentation speed and accuracy. Conclusion The proposed model does not retain the traits of conventional C-V model,which is based on the regional information. Rather,it increased the ability of capture the boundary of the target in heterogeneous regions and complex background by using image edge details. However,the method has some shortcomings. For instanc

关 键 词:高光谱遥感 影像分割 矢量C-V模型 边缘引导函数 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象