基于几何光学模型的毛竹林郁闭度无人机遥感定量反演  被引量:16

Retrieval of crown closure of moso bamboo forest using unmanned aerial vehicle(UAV) remotely sensed imagery based on geometric-optical model

在线阅读下载全文

作  者:王聪[1,2] 杜华强[1,2] 周国模[1,2] 徐小军[1,2] 孙少波[1,2] 高国龙[1,2] 

机构地区:[1]浙江农林大学浙江省森林生态系统碳循环与固碳减排重点实验室,浙江临安311300 [2]浙江农林大学环境与资源学院,浙江临安311300

出  处:《应用生态学报》2015年第5期1501-1509,共9页Chinese Journal of Applied Ecology

基  金:浙江省杰出青年科学基金项目(LR14C160001);国家自然科学基金项目(31070564;31370637;61190114);浙江省林业碳汇与计量创新团队项目(2012R10030-01);浙江省本科院校中青年学科带头人学术攀登项目(pd2013239);浙江农林大学农林碳汇与生态环境修复研究中心预研基金项目资助

摘  要:基于几何光学模型,探讨无人机遥感数据在毛竹林郁闭度定量反演中的应用,并分析了无约束和全约束两种混合像元分解对反演结果的影响.结果表明:利用无人机遥感数据与几何光学模型在一定程度上能够实现毛竹林郁闭度的估算,但不同混合像元分解方法反演精度差异较大;相对于无约束混合像元分解而言,全约束混合像元分解反演得到的郁闭度精度高,其反演郁闭度与野外实测数据的相关系数达显著水平,决定系数R2为0.63,且均方根误差也很小,为0.04左右,能够较真实地反映毛竹林的实际情况.This research focused on the application of remotely sensed imagery from unmanned aerial vehicle( UAV) with high spatial resolution for the estimation of crown closure of moso bamboo forest based on the geometric-optical model,and analyzed the influence of unconstrained and fully constrained linear spectral mixture analysis( SMA) on the accuracy of the estimated results. The results demonstrated that the combination of UAV remotely sensed imagery and geometric-optical model could,to some degrees,achieve the estimation of crown closure. However,the different SMA methods led to significant differentiation in the estimation accuracy. Compared with unconstrained SMA,the fully constrained linear SMA method resulted in higher accuracy of the estimated values,with the coefficient of determination( R2) of 0. 63 at 0. 01 level,against the measured values acquired during the field survey. Root mean square error( RMSE) of approximate 0. 04 was low,indicating that the usage of fully constrained linear SMA could bring about better results in crown closure estimation,which was closer to the actual condition in moso bamboo forest.

关 键 词:无人机数据 郁闭度 几何光学模型 混合像元分解 

分 类 号:S795.7[农业科学—林木遗传育种]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象