检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭春妮[1] 张玉梅[2] 张嘉桐[3] 吴晓军[1,2]
机构地区:[1]陕西师范大学物理学与信息技术学院,西安710119 [2]陕西师范大学计算机科学学院,西安710119 [3]西北大学文化遗产学院,西安710127
出 处:《计算机应用》2015年第6期1552-1554,1594,共4页journal of Computer Applications
基 金:陕西自然科学基金资助项目(2014JZ021);陕西省重点科技创新团队项目(2014KTZ-18);榆林市产学研合作项目(2012cxy3-6)
摘 要:为了准确地检测出复杂网络的社团结构,提出一种基于信号自适应传递的社团发现方法。首先使信号在复杂网络上自适应地传递,从而获取网络中各节点对整个网络的影响向量,然后把网络中节点的拓扑结构转化成代数向量空间上的几何关系,最后结合聚类特性发现网络中的社团结构。为获取更加合理的空间向量,提出最佳传递次数,缩小搜索空间,增强算法寻优能力。该算法在计算机生成网络、Zachary网络和美国大学生足球赛网络上进行实验测试,并与GN算法、谱聚类算法、极值优化算法和信号传递算法进行实验对比,社团划分的准确性和精确性均有所提高,证明该算法具有有效性和可行性。In order to accurately detect the community structure of complex networks, a community detection algorithm based on signal adaptive transmission was proposed. First, the signal was adaptively passed on complex networks, thereby getting the vector affecting on the entire network of each node, then the topological structure of each node was translated into geometrical relationships of algebra vector space. Thus, according to the nature of the clustering, the community structure of the network was detected. In order to get the feasible spatial vectors, the optimum transfer number was determined, which reduced the searching space, and effectively strengthened the search capability of community detection. The proposed algorithm was tested on computer-generated network, Zachary network and American college football network. Compared with Girvan- Newman (GN) algorithm, spectral clustering algorithm, extremal optimization algorithm and signal transmission algorithm, the results show that the accuracy and precision of the proposed community division algorithm is feasible and effective.
关 键 词:复杂网络 社团结构 自适应 传递次数 社团发现算法
分 类 号:TP393.02[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44