多方位地震数据联合解释技术在KN复杂断裂系统识别和储层描述中的应用  被引量:11

Complex fault system identification and reservoir characterization in KN area with multi-azimuth seismic data cubes

在线阅读下载全文

作  者:白辰阳[1] 张保庆 耿玮 肖婧[3] 

机构地区:[1]中国地质大学(北京)地球科学与资源学院,北京100083 [2]东方地球物理公司研究院,河北涿州072751 [3]中国石油大学(北京),北京102249

出  处:《石油地球物理勘探》2015年第2期351-356,6-7,共6页Oil Geophysical Prospecting

摘  要:KN地区位于渤海湾盆地黄骅拗陷,下第三系断裂系统复杂,构造破碎,储层类型多,非均质性强,常规的地震资料和传统的地震解释技术很难准确解释该区的断裂系统,也很难准确刻画该区的储层边界和内幕。本文基于KN地区的高密度宽方位地震数据,利用偏移距矢量片(OVT)域的偏移叠加数据体和OVT域的叠前偏移道集对研究区进行综合解释。多方位的综合解释技术包括:1多方位数据体断裂系统联合优化解释和识别;2多方位数据体联合应用储层识别和刻画;3多方位数据体联合应用特殊岩性体识别和刻画;4方位AVO含油气性检测。通过这些技术的应用较好地解决了该区存在的上述地质问题,钻探成功率得到提高,取得了较好的应用效果。Located in Huanghua Depression,Bohai Bay Basin,northeast China,KN area is characterized by complex paleogene fault systems with different types of reservoirs.It is very difficult to accurately identify this kind of fault systems and depict reservoir boundaries and interior on conventional seismic data with conventional interpretation techniques.In order to solve these problems,highdensity wide azimuth seismic data have been acquired in the area,and migration stack data and pre-stack migration gathers from different azimuths have been obtained after OVT domain processing.Based on these seismic data in OVT domain,complex fault systems are accurately identified and reservoir boundaries are accurately delineated using a series of techniques including fault system optimal identification with multi-azimuth seismic data joint interpretation,reservoir characterization with multi-azimuth seismic data joint interpretation,special lithologic body recognition with multi-azimuth seismic data joint interpretation,and azimuth AVO detection.Greatly improved drilling success rate based on the interpretation with these approaches suggests their feasibility and effectiveness.

关 键 词:OVT域 宽方位 方位数据联合解释技术 方位AVO 黄骅拗陷 

分 类 号:P631[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象