求解不等式约束优化的可拓遗传算法  

The Extension Genetic Algorithm for Inequality Constrained Optimization

在线阅读下载全文

作  者:刘巍[1] 杨劼[2] 高红[1] 

机构地区:[1]大连海事大学数学系,辽宁大连116026 [2]大连海事大学交通运输管理学院,辽宁大连116026

出  处:《数学的实践与认识》2015年第10期190-198,共9页Mathematics in Practice and Theory

基  金:辽宁省自然科学基金项目(2014025004);中央高校基本业务经费项目(3132014324);大连海事大学教改项目(2014Y33)

摘  要:提出了求解不等式约束优化问题的可拓遗传算法.分别考虑种群中的可行解和不可行解,建立可拓关联函数对不可行解的优劣程度进行可拓评价,然后采用精英选择策略,确保每次迭代中均有一定数量和质量的不可行解被选择,从而避免种群陷入局部最优.引入了高斯变异维持种群多样性,提高算法搜索速度.通过对两个测试问题的实验和分析,验证了可拓遗传算法的可行性和有效性.In this paper, an improved genetic algorithm based on extenics theory (EGA) for inequality constrained optimization problem is proposed. Firstly, feasible and infeasible solutions are considered separately. Particularly, extension evaluation method is used to evaluate infeasible solutions. Secondly, an elitist strategy is adopted to ensure the quantity and quality of infeasible solutions which are selected. This will be effective in avoiding convergence to a local optimum solution. At last, gauss mutation is introduced to maintain the diversity of population so that the searching speed will be improved. Two test problems are solved using the method. The results compared with those of other studies have shown the competitive advantage of our algorithm.

关 键 词:约束优化 可拓学 遗传算法 关联函数 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象