Atomization mechanism of a charged viscoelastic liquid sheet  

Atomization mechanism of a charged viscoelastic liquid sheet

在线阅读下载全文

作  者:Liu Lujia Liu Yingjie Lu Lipeng 

机构地区:[1]School of Astronautics, Beihang University [2]School of Energy and Power Engineering, Beihang University

出  处:《Chinese Journal of Aeronautics》2015年第2期403-409,共7页中国航空学报(英文版)

基  金:The financial support of the National Natural Science Foundation of China (No. 11302013)

摘  要:In order to study atomization mechanism of a viscoelastic liquid sheet in an electric field, the spatial-temporal stability analysis of a viscoelastic liquid sheet injected into a dielectric station- ary ambient gas in the presence of a vertical electric field is conducted. The dispersion relations of both sinuous and varicose disturbance modes are solved to explore the spatial-temporal instability of a charged viscoelastic sheet, by setting both the wave number and frequency complex. A para- metric study is performed to test the influence of the dimensionless parameters on the absolute instability of the sheet. The results show that the increase of liquid Weber number and time constant ratio, or decrease of gas to liquid density ratio and Reynolds number, can damp the absolute insta- bility. The effect of the liquid elasticity depends on the value of time constant ratio: when time con- stant ratio is small, the increase of liquid elasticity could amplify absolute growth rate, but the effect is weak when the elasticity number is relatively large; when time constant ratio is large, the increase of liquid elasticity cannot affect the absolute growth rate. Moreover, the variation of electrical Euler number can hardly influence the absolute instability of a charged viscoelastic sheet.In order to study atomization mechanism of a viscoelastic liquid sheet in an electric field, the spatial-temporal stability analysis of a viscoelastic liquid sheet injected into a dielectric station- ary ambient gas in the presence of a vertical electric field is conducted. The dispersion relations of both sinuous and varicose disturbance modes are solved to explore the spatial-temporal instability of a charged viscoelastic sheet, by setting both the wave number and frequency complex. A para- metric study is performed to test the influence of the dimensionless parameters on the absolute instability of the sheet. The results show that the increase of liquid Weber number and time constant ratio, or decrease of gas to liquid density ratio and Reynolds number, can damp the absolute insta- bility. The effect of the liquid elasticity depends on the value of time constant ratio: when time con- stant ratio is small, the increase of liquid elasticity could amplify absolute growth rate, but the effect is weak when the elasticity number is relatively large; when time constant ratio is large, the increase of liquid elasticity cannot affect the absolute growth rate. Moreover, the variation of electrical Euler number can hardly influence the absolute instability of a charged viscoelastic sheet.

关 键 词:Absolute growth rate Absolute instability Electrified sheet Spatial-temporal instability Viscoelastic liquid 

分 类 号:V430[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象