检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京大学管理科学与工程研究院,南京210093 [2]复旦大学管理学院,上海200433
出 处:《系统工程理论方法应用》2002年第2期153-156,162,共5页Systems Engineering Theory·Methodology·Applications
摘 要:特征选择是示例学习的关键 ,直接关系到获取的概念的优劣。基于扩张矩阵理论和粗集理论 ,将特征子集的选择问题转化为数学优化问题 ,提出了相应的优化模型。这种优化模型易于理解 ,采用现有的软件即可求解 ,克服了以前许多特征选择算法的不足。Learning from examples is widely studied in machine learning because it is a very effective cure for the bottleneck problem of knowledge acquisition. To discern positive and negative example fully, feature subset selection plays a great role in learning from examples. The smaller the base of feature subset, the better it is for concept extraction, but the optimal feature selection has been proved to be a NP hard problem. There are many disadvantages in previous algorithms. Based on extension theory, which used to be utilized for heuristic algorithms, and rough set, which is especially suitable for reduct of decision tables, we change the feature selection into an optimization problem and the corresponding models are proposed. The models are both solved by existing software or genetic algorithms (GAs) and more understandable. The method above are used for a method for concept extraction in KDD (Knowledge Discovery in Database) and the result is satisfactory in addition to overcoming some disadvantages of previous algorithms.
关 键 词:最优概念获取 示例学习 特征选择 扩张矩阵理论 粗集理论 优化模型 机器学习
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62