最优概念获取的模型研究  被引量:2

The Method for Optimal Concepts Extraction in Learning from Examples

在线阅读下载全文

作  者:陈国华[1] 赵卫东[2] 

机构地区:[1]南京大学管理科学与工程研究院,南京210093 [2]复旦大学管理学院,上海200433

出  处:《系统工程理论方法应用》2002年第2期153-156,162,共5页Systems Engineering Theory·Methodology·Applications

摘  要:特征选择是示例学习的关键 ,直接关系到获取的概念的优劣。基于扩张矩阵理论和粗集理论 ,将特征子集的选择问题转化为数学优化问题 ,提出了相应的优化模型。这种优化模型易于理解 ,采用现有的软件即可求解 ,克服了以前许多特征选择算法的不足。Learning from examples is widely studied in machine learning because it is a very effective cure for the bottleneck problem of knowledge acquisition. To discern positive and negative example fully, feature subset selection plays a great role in learning from examples. The smaller the base of feature subset, the better it is for concept extraction, but the optimal feature selection has been proved to be a NP hard problem. There are many disadvantages in previous algorithms. Based on extension theory, which used to be utilized for heuristic algorithms, and rough set, which is especially suitable for reduct of decision tables, we change the feature selection into an optimization problem and the corresponding models are proposed. The models are both solved by existing software or genetic algorithms (GAs) and more understandable. The method above are used for a method for concept extraction in KDD (Knowledge Discovery in Database) and the result is satisfactory in addition to overcoming some disadvantages of previous algorithms.

关 键 词:最优概念获取 示例学习 特征选择 扩张矩阵理论 粗集理论 优化模型 机器学习 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象