一种基于稀疏化核方法的红外强杂波背景抑制算法  被引量:4

An IR Strong Clutter Background Suppression Algorithm Based on Sparse Kernel Method

在线阅读下载全文

作  者:朱斌[1,2] 樊祥[1,2] 程正东[1,2] 王迪[1] 方义强[1] 陈晓斯[1] 

机构地区:[1]脉冲功率激光技术国家重点实验室,安徽合肥230037 [2]电子工程学院光电系,安徽合肥230037

出  处:《电子学报》2015年第4期716-721,共6页Acta Electronica Sinica

基  金:国家自然科学基金(No.61307025);安徽省自然科学基金(No.1308085QF122)

摘  要:杂波背景抑制一直是红外弱小目标检测面临的难题.背景抑制可分为背景预测和差分滤波两步.针对强杂波背景呈现非线性分布的特征,提出了一种基于稀疏化核递推最小二乘(KRLS)算法的非线性背景抑制算法.算法采用监督学习模型,使用序列图像作为训练样本.通过稀疏化控制学习函数的复杂度并剔除冗余信息,不但可以提高学习机器的推广能力,还可以降低运算量.使用真实红外图像对算法进行了测试,并分析了算法参数.实验结果表明:算法可自适应预测不同类型的强杂波背景,并有效抑制背景杂波.Clutter background suppression is always a difficulty of infrared (LR) dim and point target detection. Background suppression is divided into background estimation and difference filtering. Aiming at the nonlinear distribution of strong clutter background, a spares kemel recursive least squares (KRLS) based nonlinear background suppression algorithm is proposed. This method uses sequence images as training sample in supervised learning model. The complexity of learned function is controlled, and the redundant information is discarded by sparsification. In this way, the generalization of learning machine can be enhanced; moreover, the computational burden can be reduced. In the experiments,real IR images are used to test the algorithm, and the parameters are analyzed. Experimental results show that different kinds of strong clutter background can be estimated, and then be suppressed.

关 键 词:红外背景抑制 强杂波 背景预测 稀疏 核递推最小二乘 

分 类 号:TN911.73[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象