检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学,广州510641
出 处:《电测与仪表》2015年第10期100-104,共5页Electrical Measurement & Instrumentation
摘 要:抑制白噪声干扰是局部放电(Partial Discharge,PD)在线检测中的关键技术。提出一种基于粒子群优化的最优阈值选取去噪方法。该方法采用小波对局部放电信号进行分解,在选取阈值时建立广义交叉验证准则,以广义交叉验证准则作为适应度值函数,并结合粒子群优化算法自适应地确定出各分解层的最佳阈值。该方法不依赖任何先验知识,实现局部放电信号自适应去噪。对局部放电仿真信号和实测局部放电信号的去噪结果表明:本文提出的方法与标准阈值法相比,能更好地去除局部放电信号中的白噪声。The suppression of white noise interference is one of the key techniques in the on-line monitoring of partial discharge ( PD) .This paper proposed an optimal threshold de-noising method based on particle swarm optimization, which adopted wavelets to decompose the PD signals.When choosing the threshold, the generalized cross validation criterion was established and then was used as fitness function.By using the particle swarm optimization algorithm, the optimum threshold of every decomposition scale was adaptively determined.The threshold selection method, which does not rely on any prior knowledge, can realize adaptive de-noising of the PD signals.The de-noising results of the PD simulation signals and the field PD signals showed that compared with the standard threshold estimation method, the method proposed in this paper could remove the white noise in the PD signals more effectively.
关 键 词:局部放电 小波去噪 广义交叉验证 自适应阈值 粒子群优化算法
分 类 号:TM83[电气工程—高电压与绝缘技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117