检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程文德[1]
出 处:《磁性材料及器件》2015年第3期17-20,共4页Journal of Magnetic Materials and Devices
摘 要:根据均匀设计方法制备的Nd Fe B系永磁合金样品实验数据,应用基于粒子群算法(PSO)寻优的支持向量回归(SVR)方法,建立了磁性能与合金成分之间预测模型。留一交叉法结果表明磁性能与合金成分之间关系复杂,呈现高度的非线性。表征磁性能的剩磁Br、矫顽力Hcj和磁能积(BH)max的平均绝对百分误差分别为0.53%、3.90%和1.73%,相关系数(R2)分别高达0.839、0.967和0.940。该方法有效地预测了Nd Fe B粘结磁体的磁性能,为实验工作者研究合金成分与磁性能之间关系提供了理论指导。A model using support vector regression (SVR) combined with particle swarm optimization (PSO) was employed to construct mathematical prediction model for relationship between magnetic properties and alloy compositions according to experimental sample data of NdFeB permanent magnets based on the uniform design method. The leave-one-out cross validation (LOOCV) test results show that dependence of magnetic properties on alloy compositions is very complicated and highly nonlinear. The mean absolute percentage error for Br, Hcj and (BH)max are 0.53%, 3.90%, 1.73%, and the correlation coefficient (R^2) is as high as 0.839, 0.967 and 0.940, respectively. This investigation suggests that the PSO-SVR is an effective method to predict the properties of NdFeB magnet and resultantly provides theoretical guidance for researching dependence of magnetic properties on alloy composition for experimental researchers.
分 类 号:TM273[一般工业技术—材料科学与工程] TP183[电气工程—电工理论与新技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28