Effect of elemental molar ratio on the synthesis of higher alcohols over Co-promoted alkali-modified Mo_2C catalysts supported on CNTs  被引量:2

Effect of elemental molar ratio on the synthesis of higher alcohols over Co-promoted alkali-modified Mo_2C catalysts supported on CNTs

在线阅读下载全文

作  者:Rohollah M.Kiai Tahereh Nematian Ahmad Tavasoli Ali Karimi 

机构地区:[1]School of Chemistry,College of Science,University of Tehran [2]Research Institute of Petroleum Industry

出  处:《Journal of Energy Chemistry》2015年第3期278-284,共7页能源化学(英文版)

摘  要:A series of molybdenum carbide catalysts promoted by potassium and cobalt,supported on carbon nanotubes(CNTs) were prepared by carbothermal hydrogen reduction method using CNTs as a carbon precursor.Firstly,molybdenum and cobalt were loaded by co-precipitation method,and then potassium and additional molybdenum were impregnated to previous resultant.Different Mo/Co and K/Co molar ratio were used in catalyst synthesis.All the catalysts were characterized by ICP,BET,TEM,TPR,XRD and XPS,and the catalysts performances for higher alcohols synthesis(HAS) were investigated in a fixed-bed micro-reactor.The maximum selectivity to higher alcohols(C2+OH) was obtained at Mo/Co and K/Mo molar ratios of 1.66 and 0.6,respectively.XRD results confirmed the formation of K-Mo-C site and Co3Mo3 C phase that might play important role in producing C2+OH.A series of molybdenum carbide catalysts promoted by potassium and cobalt,supported on carbon nanotubes(CNTs) were prepared by carbothermal hydrogen reduction method using CNTs as a carbon precursor.Firstly,molybdenum and cobalt were loaded by co-precipitation method,and then potassium and additional molybdenum were impregnated to previous resultant.Different Mo/Co and K/Co molar ratio were used in catalyst synthesis.All the catalysts were characterized by ICP,BET,TEM,TPR,XRD and XPS,and the catalysts performances for higher alcohols synthesis(HAS) were investigated in a fixed-bed micro-reactor.The maximum selectivity to higher alcohols(C2+OH) was obtained at Mo/Co and K/Mo molar ratios of 1.66 and 0.6,respectively.XRD results confirmed the formation of K-Mo-C site and Co3Mo3 C phase that might play important role in producing C2+OH.

关 键 词:β-Mo2C POTASSIUM cobalt K-Co-β-Mo2C nanocatalyst mixed alcohols synthesis 

分 类 号:O613.71[理学—无机化学] O643.36[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象