检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《武汉理工大学学报(交通科学与工程版)》2015年第3期657-661,共5页Journal of Wuhan University of Technology(Transportation Science & Engineering)
摘 要:以列车轴承运行的振动加速度信号为研究对象,采用随机共振进行轴承振动信号的提取,同时基于主成分分析的方法实现对目前旋转机械常采用的23个混合域的故障特征参量进行分析,得到合适的轴承故障特征集.利用BP神经网络对以上内容的有效性进行验证.实验表明,结合2种方法得到的轴承故障诊断结果正确率可达到90%以上.T his paper takes the train axle box bearing running vibration acceleration signal as the re‐search object ,studies the signal extraction and fault feature extraction ,which are the key aspects of real-time monitoring .To extract the effective bearing fault signal ,this paper carries out the research on the stochastic resonance method to extract the effective bearing fault signal ,and adopts principal component analysis (PCA) method to reduce the dimension of 23 mixed‐domain fault characteristic pa‐rameters and get the appropriate principal component characteristic parameters .Finally ,BP neural net‐work based bearing fault diagnosis system is designed to verify the validity of the research results of this thesis .The experimental results show that the accuracy of bearing fault diagnosis can reach more than 90% by combining the two methods .
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.20