检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李宏林
出 处:《情报探索》2015年第6期22-26,32,共6页Information Research
基 金:福建省教育厅B类科技项目"基于数据挖掘的学生成绩分析与研究"(项日编号:JB12317)成果
摘 要:以综合因子分值作为学生学习指标,应用SVM、KNN、决策树、迭代森林、朴素贝叶斯、神经网络六种数据挖掘算法对其进行预测,从合并样本随机拆分及人工指定划分两个角度,根据学生科目成绩预测学生学习指标发展趋势,发现朴素贝叶斯算法预测准确率最高。为提高预测准确率,提出朴素贝叶斯算法的3种改进途径,即主成分分析、先验概率修正、多重过滤预判;利用JAVA软件建立一个基于PMML的素质预测系统,采用主成分分析、贝叶斯过滤、贝叶斯先验概率修正3个模块来提高对综合学习素质的预测准确率。The paper takes comprehensive factor score as student’s learning indicator, uses 6 data mining algorithms of SVM, KNN, decision tree, iterative forest, Naive Bayes and neural network to forecast it. The paper finds out that the accuracy of Naive Bayes is highest in forecasting development trend of student’s learning indicator on the basis of their subject achievements from two perspec-tives of pooled sample randomly splitting and artificially dividing. In order to improve forecast accuracy, the paper puts forward 3 im-provement ways for Naive Bayes algorithm, including principal component analysis (PCA), prior probability correction and multiple filter anticipation. The paper uses JAVA software to build a PMML-based quality forecast system, which adopts 3 modules of principal com-ponent analysis, Bayesian filtering and Bayesian prior probability correction to improve accuracy of comprehensive learning quality forecast.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62