机构地区:[1]Nansen-Zhu International Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences [2]Climate Change Research Center,Chinese Academy of Sciences [3]University of Chinese Academy of Sciences
出 处:《Advances in Atmospheric Sciences》2015年第7期889-897,共9页大气科学进展(英文版)
基 金:supported by the National Natural Science Foundation of China (Grant Nos. 41210007 and 41130103)
摘 要:We evaluated the potential impact of future climate change on spring maize and single-crop rice in northeastern China (NEC) by employing climate and crop models. Based on historical data, diurnal temperature change exhibited a distinct negative relationship with maize yield, whereas minimum temperature correlated positively to rice yield. Corresponding to the evaluated climate change derived from coupled climate models included in the Coupled Model Intercomparison Project Phase 5 (CMIP5) under the Representative Concentration Pathway 4.5 scenario (RCP4.5), the projected maize yield changes for three future periods [2010-39 (period 1), 2040-69 (period 2), and 2070-99 (period 3)] relative to the mean yield in the baseline period (1976-2005) were 2.92%, 3.11% and 2.63%, respectively. By contrast, the evaluated rice yields showed slightly larger increases of 7.19%, 12.39%, and 14.83%, respectively. The uncertainties in the crop response are discussed by considering the uncertainties obtained from both the climate and the crop models. The range of impact of the uncertainty became markedly wider when integrating these two sources of uncertainty. The probabilistic assessments of the evaluated change showed maize yield to be relatively stable from period 1 to period 3, while the rice yield showed an increasing trend over time. The results presented in this paper suggest a tendency of the yields of maize and rice in NEC to increase (but with great uncertainty) against the background of global warming, which may offer some valuable guidance to government policymakers.We evaluated the potential impact of future climate change on spring maize and single-crop rice in northeastern China (NEC) by employing climate and crop models. Based on historical data, diurnal temperature change exhibited a distinct negative relationship with maize yield, whereas minimum temperature correlated positively to rice yield. Corresponding to the evaluated climate change derived from coupled climate models included in the Coupled Model Intercomparison Project Phase 5 (CMIP5) under the Representative Concentration Pathway 4.5 scenario (RCP4.5), the projected maize yield changes for three future periods [2010-39 (period 1), 2040-69 (period 2), and 2070-99 (period 3)] relative to the mean yield in the baseline period (1976-2005) were 2.92%, 3.11% and 2.63%, respectively. By contrast, the evaluated rice yields showed slightly larger increases of 7.19%, 12.39%, and 14.83%, respectively. The uncertainties in the crop response are discussed by considering the uncertainties obtained from both the climate and the crop models. The range of impact of the uncertainty became markedly wider when integrating these two sources of uncertainty. The probabilistic assessments of the evaluated change showed maize yield to be relatively stable from period 1 to period 3, while the rice yield showed an increasing trend over time. The results presented in this paper suggest a tendency of the yields of maize and rice in NEC to increase (but with great uncertainty) against the background of global warming, which may offer some valuable guidance to government policymakers.
关 键 词:northeastern China statistical crop models climate models PROJECTION UNCERTAINTY
分 类 号:S162[农业科学—农业气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...