检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海电力学院计算机科学与技术学院,上海200090 [2]上海第二工业大学计算机与信息学院,上海201209 [3]中国科学技术大学工程科学学院近代力学系,合肥230027
出 处:《计算机研究与发展》2015年第6期1431-1442,共12页Journal of Computer Research and Development
基 金:中国科学院战略性先导科技专项项目(XDB10030402);国家"九七三"重点基础研究发展计划基金项目(2011CB707305);国家科技重大专项基金项目(2011ZX05009-006);上海市自然科学基金项目(11ZR1413700;12ZR1412000);上海市优秀青年教师培养资助计划项目(ZZsdl12002;ZZsdl13015);上海电力学院人才引进基金项目(K2012-004;K2013-019;K2014-020);上海第二工业大学校级重点学科建设软件服务工程基金项目(XXKZD1301)
摘 要:空间数据的应用领域正在不断扩大.数据插值可以有效重建空间未知数据.数据插值就是一个数据再生的过程,即由原始数据再生出具有更高分辨率的数据.插值方法分为"确定"性插值和"不确定"性插值方法.不确定性插值方法的不确定性一方面表现在选用的插值方式具有随机性,另一方面表现在插值参数的选取和确定需要依赖于概率统计原则.多点随机模拟法(multiple-point simulation,MPS)是实现空间数据不确定插值重建的重要手段.单一标准方程模拟(single normal equation simulation,SNESIM)作为一种常用的MPS方法,目前已经用于多个领域的离散型空间数据三维重建.但是由于SNESIM给CPU和内存带来的负荷较大,大大限制了其实际应用.为了克服这种局限性,基于统一计算设备架构(compute unified device architecture,CUDA)实现SNESIM的并行化,并在计算训练图像(training image,TI)熵的基础上选择合适的数据模板尺寸;同时,通过整合软硬数据提高重建质量.与以往基于CPU的重建方法相比,基于CUDA的SNESIM并行算法显示出更好的空间数据重建效率.The application of spatial data is becoming increasingly large. Interpolation can effectively reconstruct the unknown data in space, which is actually a process of data reproduction, and also a process of reproducing data with higher resolution from original data. Interpolation methods are divided into two branches: definite interpolation and indefinite interpolation. On one hand, the uncertainty of indefinite interpolation shows in selecting certain stochastic interpolation ways; on the other hand, the uncertainty is reflected by selecting the interpolation parameters using probability principles. Multiple-point simulation (MPS) is an important indefinite interpolation method in reconstructing spatial data, and single normal equation simulation(SNESIM), as a frequently used MPS method, has been used in three-dimensional reconstruction of categorical spatial data in many fields currently. However, due to the large burdens on CPU and memory brought in by SNESIM, its practical application has been limited greatly. To overcome this limitation, SNESIM is parallelized using compute unified device architecture(CUDA). A proper size of data template is chosen using the entropy theory of training image (TI) and the reconstruction quality is improved by the integration of soft data and hard data. Compared with the CPU-based SNESIM method, the CUDA-based one shows the better reconstruction efficiency of spatial data.
关 键 词:空间数据 多点随机模拟 统一计算设备架构 熵 软数据
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38