Nitrogen-Induced Change of Magnetic Properties in Antiperovskite-Type Carbide:Mn3InC  

Nitrogen-Induced Change of Magnetic Properties in Antiperovskite-Type Carbide:Mn3InC

在线阅读下载全文

作  者:伊木然 孙莹 邓司浩 史可文 胡鹏伟 王聪 

机构地区:[1]Center for Condensed Matter and Materials Physics,Department of Physics,Beihang University

出  处:《Chinese Physics Letters》2015年第6期159-163,共5页中国物理快报(英文版)

基  金:Supported by the National Natural Science Foundation of China under Grant Nos 91122026 and 51472017

摘  要:The effects of N substitution on the magnetic properties of Mn3InC1-xNx (0.0≤ x ≤0.7) are investigated sys- tematically. Partial substitution of N for C leads to the monotonic reduction in both the Curie temperature Tc and saturated magnetization Ms. The final results obtained from thermo-magnetie curves demonstrate that Mn3InC1-xNx samples show a magnetic phase transition from a paramagnetic (PM) state to a ferrimagnetic (FIM) state consisting of ferromagnetic (FM) and antiferromagnetie (AFM) components. In addition, there is a competition between the AFM component and the FM component in the FIM state with the change of the N-doped content. Magnetic measurements of Mn3InC at 100 Oe and 5000 Oe indicate the metastability and the coexistence of different magnetic phases at lower temperature. The spans of FIM phase broaden gradually with further N doping. The mechanism for the induction of the complicated magnetic state is still in controversy. However, the results clearly show that the doping at the X site in antiperovskite Mn3AX materials is as useful as that of the A and Mn sites.The effects of N substitution on the magnetic properties of Mn3InC1-xNx (0.0≤ x ≤0.7) are investigated sys- tematically. Partial substitution of N for C leads to the monotonic reduction in both the Curie temperature Tc and saturated magnetization Ms. The final results obtained from thermo-magnetie curves demonstrate that Mn3InC1-xNx samples show a magnetic phase transition from a paramagnetic (PM) state to a ferrimagnetic (FIM) state consisting of ferromagnetic (FM) and antiferromagnetie (AFM) components. In addition, there is a competition between the AFM component and the FM component in the FIM state with the change of the N-doped content. Magnetic measurements of Mn3InC at 100 Oe and 5000 Oe indicate the metastability and the coexistence of different magnetic phases at lower temperature. The spans of FIM phase broaden gradually with further N doping. The mechanism for the induction of the complicated magnetic state is still in controversy. However, the results clearly show that the doping at the X site in antiperovskite Mn3AX materials is as useful as that of the A and Mn sites.

关 键 词:Nitrogen-Induced Change of Magnetic Properties in Antiperovskite-Type Carbide:Mn3InC FIM Mn AFM 

分 类 号:O482.5[理学—固体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象