Stability and Hopf bifurcation analysis of a diffusive predator-prey model with Smith growth  被引量:4

Stability and Hopf bifurcation analysis of a diffusive predator-prey model with Smith growth

在线阅读下载全文

作  者:M. Sivakumar M. Sambath K. Balachandran 

机构地区:[1]Department of Mathematics, Bharathiar University Coimbatore 641046 , Tamilnadu, India

出  处:《International Journal of Biomathematics》2015年第1期163-180,共18页生物数学学报(英文版)

摘  要:In this paper, we consider a diffusive Holling-Tanner predator prey model with Smith growth subject to Neumann boundary condition. We analyze the local stability, exis- tence of a Hopf bifurcation at the co-existence of the equilibrium and stability of bifur- cating periodic solutions of the system in the absence of diffusion. Furthermore the Turing instability and Hopf bifurcation analysis of the system with diffusion are studied. Finally numerical simulations are given to demonstrate the effectiveness of the theoretical analysis.

关 键 词:Stability analysis diffusive Holling-Tanner predator-prey model Smith growth Turing instability. 

分 类 号:O322[理学—一般力学与力学基础] TP183[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象