基于DEMD和对称差分能量算子解调的滚动轴承故障诊断  被引量:12

Fault Diagnosis of Rolling Bearings Based on DEMD and Symmetric Difference EnerOeratorDemodulation

在线阅读下载全文

作  者:孟宗[1] 季艳[1] 

机构地区:[1]河北省测试计量技术及仪器重点实验室(燕山大学),秦皇岛066004

出  处:《中国机械工程》2015年第12期1658-1664,共7页China Mechanical Engineering

基  金:国家自然科学基金资助项目(51105323);河北省自然科学基金资助项目(E2015203356);河北省高等学校科学研究计划资助重点项目(ZD2015049)

摘  要:针对机械故障振动信号多为调制信号的特点,为了更好地提取多分量调幅调频信号的幅值和频率信息,提出了基于微分的经验模式分解(DEMD)与对称差分能量算子相结合的解调方法。利用DEMD算法将原始振动信号进行分解,得到若干个单分量信号;对每一个单分量信号进行三点对称差分能量算子解调,得到各单分量信号的瞬时幅值和瞬时频率,并计算出包络谱。将该方法应用于仿真信号和滚动轴承故障信号的诊断,实验结果表明,该方法能有效地提取机械故障信号的故障特征,实现旋转机械故障诊断。Aimed at the modulated characteristics of the mechanical fault vibration signals, in or- der to extract amplitude and frequency informations of multi-component amplitude modulation and frequency modulation signals, a method was put forward based on the DEMD combining with sym- metric difference energy operator demodulation. First of all, the original vibration signals were de- composed by DEMD algorithm, getting a number of single component signal, and then symmetric difference of three energy operator demodulation was used for every single component signal, getting instantaneous amplitude and instantaneous frequency of each single component signal, and the spectral envelope was calculated, finally the method was applied to the simulation signals and the rolling bear- ing fault signals. The experimental results show that the method can accurately extract the fault fea- tures of mechanical fault signals and realize rotating machinery fault diagnosis effectively.

关 键 词:微分经验模式分解 对称差分能量算子 滚动轴承 故障诊断 

分 类 号:TN911.6[电子电信—通信与信息系统] TH133.3[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象