检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨科利[1,2]
机构地区:[1]宝鸡文理学院非线性研究所,宝鸡721016 [2]陕西师范大学物理与信息技术学院,理论与计算物理研究所,西安710062
出 处:《物理学报》2015年第12期91-97,共7页Acta Physica Sinica
基 金:国家自然科学基金(批准号:11205006);陕西省科技新星专项(批准号:2014KJXX-77);宝鸡文理学院重点科研项目(批准号:ZK15028)资助的课题~~
摘 要:研究了一类可变禁区不连续系统的加周期分岔行为,发现由可变禁区导致不同类型的加周期分岔.研究表明,系统的迭代轨道和禁区的上下两个边界均可发生边界碰撞,从而产生加周期分岔.基于边界碰撞分岔理论,定义基本的迭代单元,解析推导出了相应的分岔曲线,在全参数空间中给出了不同加周期所出现的范围.与数值模拟结果比较,理论分析结果与数值结果高度一致.The period-adding bifurcations in a discontinuous system with a variable gap are observed for two control param- eters. Various period-adding bifurcations are found by simulations. The bifurcation diagram can be divided into two different zones: chaos and period. The period attractor takes up a considerable part of the parameter space, and all of them show stable period attractors. The periodic zone can also be divided into three different zones: stable period-5 attractor, period-adding bifurcations on the right side of period-5 attractor, and period-adding bifurcations on the right side of period-5 attractor. We choose various control parameters to plot the cobweb of period attractor, and find that it will exhibit a border-collision bifurcation and the period orbit loses its stability, once the position of iteration reaches discontinuous boundary. The discontinuous system has two kinds of border-collision bifurcations: one comes from the gap on the right side, and the other from the gap on the left side. The results show that the period-adding phenomena are due to the border-collision bifurcation at two boundaries of the forbidden area. In order to determine the condition of the period orbit existence, we also choose various control parameters to plot the cobweb of period attractor. The results show that the iteration sequence of period trajectory has a certain sequence with different iteration units. The period trajectory of period-adding bifurcation on the left side of period-5 attractor consists of period-4 and period-5 iteration units, forming period-9, period-13 and period-14 attractor. The period trajectory of period-adding bifurcation on the right side of period-5 attractor consists of p'eriod-6 and period-5 iteration units, forming period-ll, period-16 and period-21 attractor. All attractors can be easily shown analytically, owing to the piecewise linear characteristics of the map. We analyze its underlying mechanisms from the viewpoint of border-collision bifurcations. The result shows that the
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.255.247