检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhao Jiang Zhou Rui
机构地区:[1]School of Automation Science and Electrical Engineering, Beihang University
出 处:《Chinese Journal of Aeronautics》2015年第3期822-831,共10页中国航空学报(英文版)
基 金:co-supported by the National Natural Science Foundation of China(Nos.61273349,61203223);the Innovation Foundation of BUAA for Ph D Graduates(No.YWF-14-YJSY-013)
摘 要:Abstract This paper presents the novel use of the particle swarm optimization (PSO) to generate the end-to-end trajectory for hypersonic reentry vehicles in a quite simple formulation. The velocity- dependent bank angle profile is developed to reduce the search space of unknown parameters based on the constrained PSO algorithm. The path constraints are enforced by setting the fitness function to be infinite on condition that the particles violate the maximum allowable values. The PSO algo- rithm also provides a much easier means to satisfy the terminal conditions by adding penalty terms to the fitness function. Furthermore, the approximate reentry landing footprint is fast constructed by incorporating an interpolation model into the standardized bank angle profiles. Numerical sim ulations demonstrate that the PSO method is a feasible and flexible tool to generate the end-to-end trajectory and landing footprint for hypersonic reentry vehicles.Abstract This paper presents the novel use of the particle swarm optimization (PSO) to generate the end-to-end trajectory for hypersonic reentry vehicles in a quite simple formulation. The velocity- dependent bank angle profile is developed to reduce the search space of unknown parameters based on the constrained PSO algorithm. The path constraints are enforced by setting the fitness function to be infinite on condition that the particles violate the maximum allowable values. The PSO algo- rithm also provides a much easier means to satisfy the terminal conditions by adding penalty terms to the fitness function. Furthermore, the approximate reentry landing footprint is fast constructed by incorporating an interpolation model into the standardized bank angle profiles. Numerical sim ulations demonstrate that the PSO method is a feasible and flexible tool to generate the end-to-end trajectory and landing footprint for hypersonic reentry vehicles.
关 键 词:FOOTPRINT Hypersonic vehicles Particle swarm optimization(PSO) REENTRY Trajectories
分 类 号:V412.44[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46