检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东科技大学,山东青岛266510
出 处:《测绘科学》2015年第6期125-128,155,共5页Science of Surveying and Mapping
摘 要:针对目前利用WiFi信号进行室内定位实时精度较低的问题,该文提出了一种改进的K最近邻算法.由于室内人体走动对于WiFi信号的不规律干扰,使得室内实时定位的精度带有很大的不确定性.为了实时地消除外界干扰带来的误差,改进的K最近邻算法增加了外部节点来监测周围WiFi信号的强度变化,通过将获取的信号强度与指纹数据库中对应节点的信号强度比对,获取差值,并应用于节点周围的客户端,来实时地校正客户端的定位结果.利用此算法在Android平台上的实验表明,该算法定位简单,可以较为明显地改善节点周围2.4m范围内的实时定位精度,使平均精度能提高0.8-1m左右.Aiming at the problem of low accuracy of indoor real-time positioning using WiFi signal, this paper presented an improved KNN algorithm. The signal interference caused by humans walking could make indoor real-time positioning accuracy uncertain. To avoid the error caused by interference in real-time, the improved KNN algorithm monitored the change of WiFi signal strength around the nodes by increasing some external nodes. The signal strength was used to compare with the strength in the fingerprinter database, and the difference could be used to correct the client's positioning results. According to experiments based on Android platform, this algorithm was simple, besides, it could more obviously improve the client's positioning accuracy within the scope of 2.4m from the node and the average precision was improved by 0.8 m-1 m or so.
关 键 词:ANDROID平台 WIFI技术 K最近邻算法 Listener节点 室内定位
分 类 号:P228[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.49.32