基于遥感的新疆蝗虫灾害渐进式修正预测方法  被引量:11

Progressive approach for risk prediction of rangeland locust hazard in Xinjiang based on remotely sensed data

在线阅读下载全文

作  者:张显峰[1] 饶俊峰[1] 潘一凡[1] 

机构地区:[1]北京大学遥感与地理信息系统研究所,北京100871

出  处:《农业工程学报》2015年第11期202-208,共7页Transactions of the Chinese Society of Agricultural Engineering

基  金:"十二五"国家支撑计划项目(2012BAH27B03);新疆兵团援疆项目(2014AB021)

摘  要:蝗灾是新疆的主要生物灾害之一,对新疆农牧业生产造成严重威胁。该文利用遥感技术在新疆范围内对蝗灾风险进行预测,以期为治蝗部门及早采取生物、化学治蝗措施提供参考。该文基于蝗虫种群发育的产卵、孵化与生长3个重要阶段,利用MODIS数据定量反演影响蝗虫种群发育的关键生境因子,进而提出一种基于卫星遥感的渐进式草原蝗灾风险评估模型,并以2010年与2014年为实例,对新疆地区草原蝗灾风险进行了预测与评估:野外实测得到的蝗灾严重程度分级和模型预测的风险等级完全一致的样本点占74.4%,误差在一个等级以内的样本点占94.9%。结果表明,该文所提出的渐进式蝗灾风险预测模型能较好地反映温度、植被、土壤、水分等关键生态因子对蝗虫种群发育的影响,避免了一次性预测的不准确,预测结果与历史灾情数据和地面实测数据一致性较好。该模型可用于新疆治蝗部门对蝗灾的早期预警,以增强防灾减灾的能力。Locust hazard is one of the major disasters for farming and animal husbandry in Xinjiang, China. Currently locust disaster monitoring mainly relies on the limited observatory field sites and is not efficient due to Xinjiang’s remote geographic location, vast area and inadequate technological support. Fortunately, remote sensing technique offers a valuable tool for locust hazard monitoring and prediction in a large area such as Xinjiang. This study presents a progressive modeling approach for locust hazard risk prediction of the rangeland in Xinjiang. The underlying thought is that the model is to be built based on the key 3 growth stages of locust, namely oviposition, incubation and development, and these processes are heavily affected or even determined by the locust habitats which can be resolved into some key ecological and environmental factors, such as land surface/air temperature, rainfall, soil moisture, soil type, vegetation type and coverage, geographic altitude. The suitability of locust habitat is assessed for these 3 stages using satellite remote sensing data, adopting locust oviposition suitability indicator (OSI), incubation suitability indicator (ISI) and development suitability indicator (DSI). The 3 types of suitability indicators are created mainly based on the derivatives from Terra/MODIS remote sensing data, digital elevation model (DEM) data and ground measured ancillary data. The OSI is created by the weighted combination of 3 sub-indices: soil type factor, soil moisture factor and vegetation factor for oviposition. The ISI is formed from the multiplication of land surface temperature factor and soil moisture factor. And geographic altitude factor, vegetation coverage factor in development stage and vegetation type factor are used to generate the DSI by a weighted combination. Each factor is normalized to the score from 1 to 10, indicating the degree of suitability of this factor. The number 1 represents least suitability and 10 most suitability. Afterwards, the 3 indicat

关 键 词:遥感 风险评估 虫灾控制 蝗灾 渐进式预测 生境因子 定量反演 

分 类 号:S46[农业科学—植物保护] P954[天文地球—自然地理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象