检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110819
出 处:《东北大学学报(自然科学版)》2015年第6期769-772,共4页Journal of Northeastern University(Natural Science)
基 金:国家自然科学基金资助项目(61272181;61202087);武汉大学开放基金资助项目(SKLSE2012-09-40)
摘 要:针对海量数据规模下的集中式核函数极限学习机的性能问题,将基于核函数的极限学习机扩展到云计算技术框架下,提出了基于MapReduce的分布式核函数极限学习机MR-KELM.该算法将分布式径向基核函数计算出的核函数矩阵进行分布式矩阵分解,并通过分布式矩阵向量乘法得到分类器输出权重,减小了网络通讯和数据交换代价.实验结果表明,MR-KELM算法能够在不影响基于核函数的极限学习机的计算理论的前提下,具有较好的可扩展性和分类训练性能.With the exponentially increasing volume of training data, the performance of centralized ELM with kernels suffers due to large matrix operations. A distributed algorithm named MapReduce based kernelized ELM (MR-KELM) was proposed, which realized an implementation of ELM with kernels on MapReduce in the cloud. The kernel matrix generated by distributed radial basis function was decomposed and then the output weights by distributed multiplication of matrix and vector were calculated by the proposed algorithm. Communications and data exchanges in distributed matrix operations were reduced and good scalability was achieved by MR-KELM. Extensive experiments on synthetic datasets were conducted to verify the training performance and scalability of MR-KELM. Experimental results showed that MR-KELM was effective and efficient for massive learning applications.
关 键 词:极限学习机 核函数 分类 分布式 MAPREDUCE
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145